Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review
Abstract
:1. Introduction
2. Working Mechanism of HSI and Challenges
3. Types of HSI
- (a)
- Whiskbroom (point scanning): This method captures one single pixel at a time, gradually building the image as the camera scans across the sample [36]. Each pixel includes all of its spectral information, resulting in very high spectral resolution. However, the image acquisition process is time-consuming, making it less suitable for applications requiring rapid data collection [37]. Despite this limitation, whiskbroom scanning is valued for its precision in capturing detailed spectral data.
- (b)
- Push-broom (line scanning): Push-broom technology measures unceasing spectra one line of pixels at a time, making it widely used in industrial quality control monitoring processes [38,39]. Its main limitation is the high losses caused by the entrance slit of the spectrometer, which can reduce the overall efficiency of light capture. Nonetheless, push-broom scanning is favored in many applications for its balance between speed and spectral resolution, offering a practical solution for real-time monitoring and analysis.
- (c)
- Fourier Transform (FT) spectroscopy: An alternative for measuring non-stop spectra, FT spectroscopy combines a monochrome imaging sensor with an interferometer, providing higher light throughput compared with push-broom systems [40]. This method enhances efficiency and accuracy in spectral data collection, making it ideal for applications requiring high sensitivity and precision [41]. Additionally, FT spectroscopy can effectively handle a wide range of wavelengths, further broadening its applicability in various scientific and industrial fields.
- (d)
- Spectral scanning: This technique is capable of gathering the entirety of the spatial information associated with a given wavelength, with each wavelength being considered individually [42]. While the process is relatively rapid when considered on an image-by-image basis, the overall procedure is considerably slower due to the necessity of changing wavelengths. Nevertheless, spectral scanning is a powerful tool for applications that require high spatial resolution at specific wavelengths. Its ability to precisely isolate and capture data for individual wavelengths makes it particularly useful in fields such as fluorescence microscopy, where detailed spectral information is crucial. Additionally, spectral scanning can be optimized to focus on particular regions of interest, enhancing the efficiency of data collection in targeted studies [43].
- (e)
- HS snapshot cameras: These cameras capture HS video, making them ideal for imaging moving objects [44]. The method is rapid and effective, although it typically provides restricted spectral and spatial resolutions in comparison to alternative techniques [45]. Nonetheless, snapshot cameras are crucial in applications requiring real-time HS imaging.
4. Synergy between AI and HSI
Algorithm | Description | Strengths | Weaknesses | Applications |
---|---|---|---|---|
Convolutional Neural Networks (CNNs) [102,103] | DL models that use convolutional layers to capture spatial and spectral features. | High accuracy, ability to capture complex patterns, end-to-end learning. | Requires large datasets, computationally intensive. | Crop categorization, disease detection, yield prediction. |
Support Vector Machines (SVMs) [104,105] | Supervised learning models that find the optimal hyperplane to classify data. | Effective in high-dimensional spaces, robust to overfitting. | Less effective with noisy data, requires careful parameter tuning. | Soil property categorization, crop health monitoring. |
Random Forests (RF) [106,107] | Ensemble learning method that uses multiple decision trees for categorization and regression. | Handles large datasets, good at managing overfitting. | Can be less interpretable, may require extensive computation. | Crop type categorization, pest and disease identification. |
Principal Component Analysis (PCA) [108,109] | Dimensionality reduction technique that transforms data into a set of orthogonal components. | Reduces computational load, highlights main spectral features. | May lose important information, not ideal for non-linear data. | Preprocessing for further analysis, noise reduction. |
K-Nearest Neighbors (KNN) [110,111] | Simple algorithm that classifies based on the majority class among K-Nearest Neighbors. | Easy to implement, non-parametric. | Computationally expensive with large datasets, sensitive to irrelevant features. | Crop species classification, vegetation monitoring. |
Artificial Neural Networks (ANNs) [99,112] | Computing systems inspired by biological neural networks, capable of pattern recognition. | Flexible, can model complex relationships. | Requires extensive training data, prone to overfitting. | Spectral unmixing, anomaly detection. |
Recurrent Neural Networks (RNNs) [113] | NNs with loops, designed to recognize patterns in sequences of data. | Effective for temporal dependencies, can handle sequential data. | Can suffer from vanishing gradients, and requires large memory. | Time-series crop monitoring, growth stage identification. |
Graph Convolutional Networks (GCNs) [114,115] | NNs that operate on graph-structured data, capturing relationships in irregular data. | Can model complex dependencies, robust to varying data structures. | Complex implementation requires extensive computational resources. | Crop disease spread modeling, soil nutrient mapping. |
Sparse Representation [116,117] | Techniques that represent data as a sparse combination of basis functions. | Effective in capturing essential features, good for compressed sensing. | Requires careful selection of basis functions, computationally intensive. | HSI denoising, feature extraction. |
Deep Residual Networks (ResNets) [118,119] | NNs that use skip connections to mitigate the vanishing gradient problem. | High accuracy, allows for very deep networks and improves training. | Requires significant computational power, and complex architecture. | Crop health monitoring, detailed spectral analysis. |
Generative Adversarial Networks (GANs) [120,121] | NNs that consist of a generator and a discriminator, used for data generation. | Can create high-quality synthetic data, effective for data augmentation. | Difficult to train, prone to instability. | Data augmentation, and synthesis of HS images. |
5. Applications
- (A)
- Agriculture
- (B)
- Environmental monitoring
- (C)
- Mining and mineralogy
- (D)
- Forensic science
- (E)
- Medical field
- (F)
- Space operations
6. Challenges and Future Prospectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.A.; O’Donnell, C.P.; Taghizadeh, M.; Cullen, P.J.; Frias, J.M.; Downey, G. Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). J. Chemom. 2008, 22, 259–267. [Google Scholar] [CrossRef]
- Stuart, M.B.; Davies, M.; Hobbs, M.J.; Pering, T.D.; McGonigle, A.J.S.; Willmott, J.R. High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios. Sensors 2022, 22, 4652. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Amigo, J.M.; Martí, I.; Gowen, A. Chapter 9—Hyperspectral Imaging and Chemometrics: A Perfect Combination for the Analysis of Food Structure, Composition and Quality. In Data Handling in Science and Technology; Marini, F., Ed.; Chemometrics in Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 28, pp. 343–370. [Google Scholar] [CrossRef]
- Picot-Clémente, J. Hyperspectral Imaging’s Potential for Transforming the Imaging Field. Laser Focus World. Available online: https://www.laserfocusworld.com/detectors-imaging/article/14289712/hyperspectral-imagings-potential-for-transforming-the-imaging-field (accessed on 9 July 2024).
- Sun, D.-W.; Pu, H.; Yu, J. Applications of hyperspectral imaging technology in the food industry. Nat. Rev. Electr. Eng. 2024, 1, 251–263. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Lee, W.S. Plant Health Detection and Monitoring. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 275–288. [Google Scholar] [CrossRef]
- Li, J.; Rao, X.; Ying, Y. Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Schmilovitch, Z.; Ignat, T.; Alchanatis, V.; Gatker, J.; Ostrovsky, V.; Felföldi, J. Hyperspectral imaging of intact bell peppers. Biosyst. Eng. 2014, 117, 83–93. [Google Scholar] [CrossRef]
- Riccioli, C.; Pérez-Marín, D.; Garrido-Varo, A. Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges. Postharvest Biol. Technol. 2021, 176, 111504. [Google Scholar] [CrossRef]
- Mendez, J.; Mendoza, L.; Cruz-Tirado, J.P.; Quevedo, R.; Siche, R. Trends in Application of NIR and Hyperspectral Imaging for Food Authentication. Sci. Agropecu. 2019, 10, 143–161. [Google Scholar] [CrossRef]
- Naganathan, G.K.; Cluff, K.; Samal, A.; Calkins, C.; Subbiah, J. Quality Evaluation of Beef and Pork. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 251–273. [Google Scholar] [CrossRef]
- Jia, J.; Zheng, X.; Wang, Y.; Chen, Y.; Karjalainen, M.; Dong, S.; Lu, R.; Wang, J.; Hyyppä, J. The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions. Remote Sens. Environ. 2024, 311, 114291. [Google Scholar] [CrossRef]
- Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- Tratt, D.M.; Keim, E.R.; Hall, J.L.; Buckland, K.N.; Volquarts, T.L.; Saad, K.M.; Johnson, P.D. High areal rate longwave-infrared hyperspectral imaging for environmental remote sensing. In Micro- and Nanotechnology Sensors, Systems, and Applications X; SPIE: Orlando, FL, USA, 2018; pp. 171–181. [Google Scholar] [CrossRef]
- Gul, N.; Muzaffar, K.; Shah, S.Z.A.; Assad, A.; Makroo, H.A.; Dar, B.N. Deep learning hyperspectral imaging: A rapid and reliable alternative to conventional techniques in the testing of food quality and safety. Qual. Assur. Saf. Crops Foods 2024, 16, 78–97. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Efimov, A.R.; Nikonorov, A.V.; Oseledets, I.V.; Skidanov, R.V.; Butt, M.A. A Perspective on the Artificial Intelligence’s Transformative Role in Advancing Diffractive Optics. Iscience 2024, 27, 110270. [Google Scholar] [CrossRef]
- Hong, D.; He, W.; Yokoya, N.; Yao, J.; Gao, L.; Zhang, L.; Chanussot, J.; Zhu, X. Interpretable Hyperspectral Artificial Intelligence: When Nonconvex Modeling Meets Hyperspectral Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 52–87. [Google Scholar] [CrossRef]
- Jin, H.; Kong, F.; Li, X.; Shen, J. Artificial intelligence in microplastic detection and pollution control. Environ. Res. 2024, 262, 119812. [Google Scholar] [CrossRef]
- Wijata, A.M.; Foulon, M.F.; Bobichon, Y.; Vitulli, R.; Celesti, M.; Camarero, R.; Di Cosimo, G.; Gascon, F.; Longépé, N.; Nieke, J.; et al. Taking Artificial Intelligence Into Space Through Objective Selection of Hyperspectral Earth Observation Applications: To bring the “brain” close to the “eyes” of satellite missions. IEEE Geosci. Remote Sens. Mag. 2023, 11, 10–39. [Google Scholar] [CrossRef]
- Centorame, L.; Ilari, A.; Del Gatto, A.; Pedretti, E.F. F. A Systematic Review on Precision Agriculture Applied to Sunflowers, the Role of Hyperspectral Imaging. Comput. Electron. Agric. 2024, 222, 109097. [Google Scholar] [CrossRef]
- Hyperspectral Imaging Technology: How It Works|Imec. Available online: https://www.imechyperspectral.com/en/hyperspectral-imaging-technology (accessed on 10 July 2024).
- Studier-Fischer, A.; Bressan, M.; Qasim, A.B.; Özdemir, B.; Sellner, J.; Seidlitz, S.; Haney, C.M.; Egen, L.; Michel, M.; Dietrich, M.; et al. Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence. Sci. Rep. 2024, 14, 17262. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Kim, Y.N.; Kim, H.; Akter, T.; Kim, H.; Park, M.S.; Kim, M.S.; Baek, I.; Cho, B.K. Hyperspectral imaging system for pre- and post-harvest defect detection in paprika fruit. Postharvest Biol. Technol. 2024, 218, 113151. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, T.-S.; Yang, H.-S.; Rhee, S.-W. Optical Design of A Compact Imaging Spectrometer for STSAT3. J. Opt. Soc. Korea 2008, 12, 262–268. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Kharitonov, S.I.; Karsakov, A.V.; Khonina, S.N. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Comput. Opt. 2014, 38, 271–280. [Google Scholar] [CrossRef]
- Aviara, N.A.; Liberty, J.T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 2022, 8, 100288. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral Imaging for Clinical Applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Gorji, H.T.; Kessel, J.A.S.V.; Haley, B.J.; Husarik, K.; Sonnier, J.; Shahabi, S.M.; Zadeh, H.K.; Chan, D.E.; Qin, J.; Baek, I.; et al. Deep Learning and Multiwavelength Fluorescence Imaging for Cleanliness Assessment and Disinfection in Food Services. Front. Sens. 2022, 3, 97770. [Google Scholar] [CrossRef]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- García-Vera, Y.E.; Polochè-Arango, A.; Mendivelso-Fajardo, C.A.; Gutiérrez-Bernal, F.J. Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review. Sustainability 2024, 16, 6064. [Google Scholar] [CrossRef]
- Matese, A.; Czarnecki, J.M.P.; Samiappan, S.; Moorhead, R. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science? Trends Plant Sci. 2024, 29, 196–209. [Google Scholar] [CrossRef]
- Bassler, M.C.; Stefanakis, M.; Sequeira, I.; Ostertag, E.; Wagner, A.; Bartsch, J.W.; Roeßler, M.; Mandic, R.; Reddmann, E.F.; Lorenz, A.; et al. Comparison of Whiskbroom and Pushbroom darkfield elastic light scattering spectroscopic imaging for head and neck cancer identification in a mouse model. Anal. Bioanal. Chem. 2021, 413, 7363–7383. [Google Scholar] [CrossRef]
- Funatomi, T.; Ogawa, T.; Tanaka, K.; Kubo, H.; Caron, G.; Mouaddib, E.M.; Matsushita, Y.; Mukaigawa, Y. Eliminating Temporal Illumination Variations in Whisk-broom Hyperspectral Imaging. Int. J. Comput. Vis. 2022, 130, 1310–1324. [Google Scholar] [CrossRef]
- Barbieux, K. Pushbroom Hyperspectral Data Orientation by Combining Feature-Based and Area-Based Co-Registration Techniques. Remote Sens. 2018, 10, 645. [Google Scholar] [CrossRef]
- Kim, J.-I.; Chi, J.; Masjedi, A.; Flatt, J.E.; Crawford, M.M.; Habib, A.F.; Lee, J.; Kim, H.C. High-resolution hyperspectral imagery from pushbroom scanners on unmanned aerial systems. Geosci. Data J. 2022, 9, 221–234. [Google Scholar] [CrossRef]
- Rakib, F.; Al-Saad, K.; Ustaoglu, S.G.; Ullah, E.; Mall, R.; Thompson, R.; Abdelalim, E.M.; Ahmed, T.; Severcan, F.; Ali, M.H. Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sci. 2021, 11, 918. [Google Scholar] [CrossRef]
- Govari, M.; Tryfinopoulou, P.; Panagou, E.Z.; Nychas, G.-J.E. Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets. Foods 2022, 11, 2356. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, Y.; Wang, Z.; Ma, J.; Tian, X. Scanning-based compressive hyperspectral imaging via spectral-coded illumination. Opt. Lett. 2023, 48, 3387–3390. [Google Scholar] [CrossRef]
- Wang, Y.W.; Reder, N.P.; Kang, S.; Glaser, A.K.; Liu, J.T.C. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics 2017, 1, 369–388. [Google Scholar] [CrossRef]
- Guenot, D.; Alexander, J.; Selvander, M. Compact snapshot hyperspectral camera for ophthalmology. Opt. Contin. 2024, 3, 565–573. [Google Scholar] [CrossRef]
- Pieters, O.; De Swaef, T.; Lootens, P.; Stock, M.; Roldán-Ruiz, I.; Wyffels, F. Limitations of snapshot hyperspectral cameras to monitor plant response dynamics in stress-free conditions. Comput. Electron. Agric. 2020, 179, 105825. [Google Scholar] [CrossRef]
- Kawakami, R.; Matsushita, Y.; Wright, J.; Ben-Ezra, M.; Tai, Y.W.; Ikeuchi, K. High-Resolution Hyperspectral Imaging via Matrix Factorization. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Jullien, A.; Pascal, R.; Bortolozzo, U.; Forget, N.; Residori, S. High-resolution hyperspectral imaging with cascaded liquid crystal cells. Optica 2017, 4, 400–405. [Google Scholar] [CrossRef]
- Tegdan, J.; Ekehaug, S.; Hansen, I.M.; Aas, L.M.S.; Steen, K.J.; Pettersen, R.; Beuchel, F.; Camus, L. Underwater hyperspectral imaging for environmental mapping and monitoring of seabed habitats. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Wang, F.; Liu, F. Hyperspectral Redundancy Detection and Modeling with Local Hurst Exponent. Phys. A Stat. Mech. Its Appl. 2022, 592, 126830. [Google Scholar] [CrossRef]
- Mishra, P.; Karami, A.; Nordon, A.; Rutledge, D.N.; Roger, J.-M. Automatic de-noising of close-range hyperspectral images with a wavelength-specific shearlet-based image noise reduction method. Sens. Actuators B Chem. 2019, 281, 1034–1044. [Google Scholar] [CrossRef]
- Ruiz Hidalgo, D.; Bacca Cortés, B.; Caicedo Bravo, E. Dimensionality reduction of hyperspectral images of vegetation and crops based on self-organized maps. Inf. Process. Agric. 2021, 8, 310–327. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.P.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Göndöcs, D.; Dörfler, V. AI in medical diagnosis: AI prediction & human judgment. Artif. Intell. Med. 2024, 149, 102769. [Google Scholar] [CrossRef]
- Tironi, M.; Rivera Lisboa, D.I. Artificial intelligence in the new forms of environmental governance in the Chilean State: Towards an eco-algorithmic governance. Technol. Soc. 2023, 74, 102264. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.S.; Chen, Y.H.; Wang, Y.K.; Chen, T.H.; Tseng, Y.S.; Huang, C.W.; Wu, I.C.; Wang, H.C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Simon, S.M.; Glaum, P.; Valdovinos, F.S. Interpreting random forest analysis of ecological models to move from prediction to explanation. Sci. Rep. 2023, 13, 3881. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F. Multilayer Perceptrons for Classification and Regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Gupta, V.; Mishra, V.K.; Singhal, P.; Kumar, A. An Overview of Supervised Machine Learning Algorithm. In Proceedings of the 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 16–17 December 2022; pp. 87–92. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Gothane, S.; Raju, K.S.; Tara, S.; Devika, P. Unsupervised learning towards hierarchical clustering. AIP Conf. Proc. 2023, 2477, 030049. [Google Scholar] [CrossRef]
- Howley, T.; Madden, M.G.; O’Connell, M.-L.; Ryder, A.G. The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data. Knowl.-Based Syst. 2006, 19, 363–370. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef]
- Firsov, N.A.; Podlipnov, V.V.; Ivliev, N.A.; Ryskova, D.D.; Pirogov, A.V.; Muzyka, A.A.; Makarov, A.R.; Lobanov, V.E.; Platonov, V.I.; Babichev, A.N.; et al. Ensembles of spectral-spatial convolutional neural network models for classifying soil types in hyperspectral images. Comput. Opt. 2023, 47, 795–805. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, A new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Berahmand, K.; Daneshfar, F.; Salehi, E.S.; Li, Y.; Xu, Y. Autoencoders and their applications in machine learning: A survey. Artif. Intell. Rev. 2024, 57, 28. [Google Scholar] [CrossRef]
- Sigger, N.; Vien, Q.-T.; Nguyen, S.V.; Tozzi, G.; Nguyen, T.T. Unveiling the potential of diffusion model-based framework with transformer for hyperspectral image classification. Sci. Rep. 2024, 14, 8438. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.-J.; Ducoffe, M. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Joksimovic, S.; Ifenthaler, D.; Marrone, R.; De Laat, M.; Siemens, G. Opportunities of artificial intelligence for supporting complex problem-solving: Findings from a scoping review. Comput. Educ. Artif. Intell. 2023, 4, 100138. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Scabini, L.F.; Bruno, O.M. Structure and Performance of Fully Connected Neural Networks: Emerging Complex Network Properties—ScienceDirect. Phys. A Stat. Mech. Its Appl. 2023, 615, 128585. [Google Scholar] [CrossRef]
- Wang, C.; Yao, C.; Zhao, S.; Zhao, S.; Li, Y. A Comparative Study of a Fully-Connected Artificial Neural Network and a Convolutional Neural Network in Predicting Bridge Maintenance Costs. Appl. Sci. 2022, 12, 3595. [Google Scholar] [CrossRef]
- Ching, W.P.; Abdullah, S.S.; Shapiai, M.I.; Islam, A.K.M.M. Performance Enhancement of Alzheimer’s Disease Diagnosis Using Generative Adversarial Network. J. Adv. Res. Appl. Sci. Eng. Technol. 2025, 45, 191–201. [Google Scholar] [CrossRef]
- Pokkuluri, K.S.; NSSSN, U.D.N.; Margala, M.; Chakrabarti, P. Enhancing Image Segmentation Accuracy using Deep Learning Techniques. J. Adv. Res. Appl. Sci. Eng. Technol. 2025, 49, 139–148. [Google Scholar] [CrossRef]
- Duodu, N.Y.; Patel, W.D.; Koyuncu, H. Advancements in Telehealth: Enhancing Breast Cancer Detection and Health Automation through Smart Integration of IoT and CNN Deep Learning in Residential and Healthcare Settings. J. Adv. Res. Appl. Sci. Eng. Technol. 2025, 45, 214–226. [Google Scholar] [CrossRef]
- Duran, B.; Emory, D.; Azam, Y.E.; Linzell, D.G. A novel CNN architecture for robust structural damage identification via strain measurements and its validation via full-scale experiments. Measurement 2025, 239, 115393. [Google Scholar] [CrossRef]
- Guo, Y.-T.; Li, Q.-Q.; Liang, C.-S. The rise of nonnegative matrix factorization: Algorithms and applications. Inf. Syst. 2024, 123, 102379. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef]
- Yin, J.; Qi, C.; Chen, Q.; Qu, J. Spatial-Spectral Network for Hyperspectral Image Classification: A 3-D CNN and Bi-LSTM Framework. Remote Sens. 2021, 13, 2353. [Google Scholar] [CrossRef]
- Ma, D.; He, F.; Yue, Y.; Guo, R.; Zhao, T.; Wang, M. Graph convolutional networks for street network analysis with a case study of urban polycentricity in Chinese cities. Int. J. Geogr. Inf. Sci. 2024, 38, 931–955. [Google Scholar] [CrossRef]
- Zhang, W.; Song, H.; He, X.; Huang, L.; Zhang, X.; Zheng, J.; Shen, W.; Hao, X.; Liu, X. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl. 2021, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Huang, X. Hyperspectral image super-resolution combining with deep learning and spectral unmixing. Signal Process. Image Commun. 2020, 84, 115833. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Hu, T.; Tao, R. Hyperspectral Image Super-resolution Using Generative Adversarial Network and Residual Learning. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 3012–3016. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Remane, K.; Kindel, B.; Tang, G. Spectral Super-Resolution for Hyperspectral Image Reconstruction Using Dictionary and Machine Learning. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1764–1767. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Zhang, N.; Zhang, Y.; Zhao, Z. A Review of Hyperspectral Image Super-Resolution Based on Deep Learning. Remote Sens. 2023, 15, 2853. [Google Scholar] [CrossRef]
- De Lucia, G.; Lapegna, M.; Romano, D. Towards explainable AI for hyperspectral image classification in Edge Computing environments. Comput. Electr. Eng. 2022, 103, 108381. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, D. Hyperspectral Image Classification Using Deep Learning Models: A Review. J. Phys. Conf. Ser. 2021, 1950, 012087. [Google Scholar] [CrossRef]
- Bhavatarini, N.; Akash, B.N.; Avinash, A.R.; Akshay, H.M. Object Detection and Classification of Hyperspectral Images Using K-NN. In Proceedings of the 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India, 5–7 April 2023. [Google Scholar]
- Makarenko, M.; Burguete-Lopez, A.; Wang, Q.; Getman, F.; Giancola, S.; Ghanem, B.; Fratalocchi, A. Real-time Hyperspectral Imaging in Hardware via Trained Metasurface Encoders. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12682–12692. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Zhang, A.; Liu, Y. Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model. Sensors 2022, 22, 9678. [Google Scholar] [CrossRef]
- Erturk, A.; Erturk, S. Unsupervised Segmentation of Hyperspectral Images Using Modified Phase Correlation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 527–531. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Shmilovici, A. Support Vector Machines. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer US: Boston, MA, USA, 2005; pp. 257–276. [Google Scholar] [CrossRef]
- Mercier, G.; Lennon, M. Support vector machines for hyperspectral image classification with spectral-based kernels. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 1, pp. 288–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B.; Fu, P. Active Semi-Supervised Random Forest for Hyperspectral Image Classification. Remote Sens. 2019, 11, 2974. [Google Scholar] [CrossRef]
- Joelsson, S.R.; Benediktsson, J.A.; Sveinsson, J.R. Random forest classifiers for hyperspectral data. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’05, Seoul, Republic of Korea, 29 July 2005; p. 4. [Google Scholar] [CrossRef]
- Farrugia, J.; Griffin, S.; Valdramidis, V.P.; Camilleri, K.; Falzon, O. Principal component analysis of hyperspectral data for early detection of mould in cheeselets. Curr. Res. Food Sci. 2021, 4, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Deepa, P.; Thilagavathi, K. Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 656–660. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Kang, X.; Huang, K. Hyperspectral image classification based on KNN sparse representation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2411–2414. [Google Scholar] [CrossRef]
- Cariou, C.; Moan, S.L.; Chehdi, K. Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images. Remote Sens. 2020, 12, 3745. [Google Scholar] [CrossRef]
- Dhingra, S.; Kumar, D. Hyperspectral image classification using meta-heuristics and artificial neural network. J. Inf. Optim. Sci. 2022, 43, 2167–2179. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, S.; Zhang, S.; Xu, M.; Jia, X. Graph-in-Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 1157–1171. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Akhtar, N.; Shafait, F.; Mian, A. Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 63–78. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, N.; Zhang, Y.; Song, C. Tensor-Based Sparse Representation for Hyperspectral Image Reconstruction Using RGB Inputs. Mathematics 2024, 12, 708. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Ma, L.; Jiang, H.; Zhao, H. Deep residual networks for hyperspectral image classification. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1824–1827. [Google Scholar] [CrossRef]
- Tao, Y.; Bao, J.; Liu, Q.; Liu, L.; Zhu, J. Deep residual network enabled smart hyperspectral image analysis and its application to monitoring moisture, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 287, 122083. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, W. Robust hyperspectral image classification using generative adversarial networks. Inf. Sci. 2024, 666, 120452. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, Y.; Yu, X. Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance. Sci. Rep. 2023, 13, 22019. [Google Scholar] [CrossRef]
- Awais, M.; Naqvi, S.M.Z.A.; Zhang, H.; Li, L.; Zhang, W.; Awwad, F.A.; Ismail, E.A.; Khan, M.I.; Raghavan, V.; Hu, J. AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. Bioresour. Bioprocess. 2023, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote Sens. 2021, 13, 3209. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Konya, A.; Nematzadeh, P. Recent applications of AI to environmental disciplines: A review. Sci. Total Environ. 2024, 906, 167705. [Google Scholar] [CrossRef]
- Yin, X.; Li, J.; Kadry, S.N.; Sanz-Prieto, I. Artificial intelligence assisted intelligent planning framework for environmental restoration of terrestrial ecosystems. Environ. Impact Assess. Rev. 2021, 86, 106493. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Ilyas, S.; Heyes, G.W.; Kim, H. A critical review of artificial intelligence in mineral concentration. Miner. Eng. 2022, 189, 107884. [Google Scholar] [CrossRef]
- Rangel Gavidia, J.C.; Chinelatto, G.F.; Basso, M.; da Ponte Souza, J.P.; Soltanmohammadi, R.; Vidal, A.C.; Goldstein, R.H.; Mohammadizadeh, S. Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation. Geoenergy Sci. Eng. 2023, 231, 212303. [Google Scholar] [CrossRef]
- Sankhla, M.S.; Kumar, N. (Eds.) Artificial Intelligence in Forensic Science: An Emerging Technology in Criminal Investigation Systems; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Tynan, P. The Integration and Implications of Artificial Intelligence in Forensic Science|Forensic Science, Medicine and Pathology. Forensic Sci. Med. Pathol. 2024. [Google Scholar] [CrossRef]
- Bindra, S.; Jain, R. Artificial intelligence in medical science: A review. Ir. J. Med. Sci. 1971 2024, 193, 1419–1429. [Google Scholar] [CrossRef]
- Xu, N.; Yang, D.; Arikawa, K.; Bai, C. Application of Artificial Intelligence in Modern Medicine. Clin. eHealth 2023, 6, 130–137. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Modi, A.; Mistry, K. AI and Robots Impact on Space Exploration. Adv. Astronaut. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Russo, A.; Lax, G. Using Artificial Intelligence for Space Challenges: A Survey. Appl. Sci. 2022, 12, 5106. [Google Scholar] [CrossRef]
- Atsmon, G.; Nehurai, O.; Kizel, F.; Eizenberg, H.; Nisim Lati, R. Hyperspectral imaging facilitates early detection of Orobanche cumana below-ground parasitism on sunflower under field conditions. Comput. Electron. Agric. 2022, 196, 106881. [Google Scholar] [CrossRef]
- Appeltans, S.; Pieters, J.G.; Mouazen, A.M. Detection of leek white tip disease under field conditions using hyperspectral proximal sensing and supervised machine learning. Comput. Electron. Agric. 2021, 190, 106453. [Google Scholar] [CrossRef]
- Yu, K.; Fang, S.; Zhao, Y. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 245, 118917. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [Google Scholar] [CrossRef]
- Xue, B.; Tian, L.; Wang, Z.; Wang, X.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. Quantification of rice spikelet rot disease severity at organ scale with proximal imaging spectroscopy. Precis. Agric. 2023, 24, 1049–1071. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; Gonzalez-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Chiu, M.-F.; Zou, X.-W. Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging. Comput. Electron. Agric. 2022, 197, 106970. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Khalid, M.M.; Karan, O. Deep Learning for Plant Disease Detection. Int. J. Math. Stat. Comput. Sci. 2024, 2, 75–84. [Google Scholar] [CrossRef]
- Moghadam, P.; Ward, D.; Goan, E.; Jayawardena, S.; Sikka, P.; Hernandez, E. Plant Disease Detection Using Hyperspectral Imaging. In Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, NSW, Australia, 29 November–1 December 2017. [Google Scholar]
- Neri, I.; Caponi, S.; Bonacci, F.; Clementi, G.; Cottone, F.; Gammaitoni, L.; Figorilli, S.; Ortenzi, L.; Aisa, S.; Pallottino, F.; et al. Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture. Sensors 2024, 24, 344. [Google Scholar] [CrossRef] [PubMed]
- Firsov, N.A.; Podlipnov, V.; Ivliev, N.; Nikolaev, P.; Mashkov, S.; Ishkin, P.; Skidanov, R.; Nikonorov, A. Neural network-aided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index. Comput. Opt. 2021, 45, 887–896. [Google Scholar] [CrossRef]
- Faltynkova, A.; Johnsen, G.; Wagner, M. Hyperspectral imaging as an emerging tool to analyze microplastics: A systematic review and recommendations for future development. Microplastics Nanoplastics 2021, 1, 13. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef] [PubMed]
- Lechevallier, P.; Villez, K.; Felsheim, C.; Rieckermann, J. Towards non-contact pollution monitoring in sewers with hyperspectral imaging. Environ. Sci. Water Res. Technol. 2024, 10, 1160–1170. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Li, X.; Huang, Y.; Zhang, L.; Zhu, Z.; Sun, X.; Lan, Z.; Guo, W. Hyperspectral Remote Sensing Technology for Water Quality Monitoring: Knowledge Graph Analysis and Frontier trend. Front. Environ. Sci. 2023, 11, 1133325. [Google Scholar] [CrossRef]
- Akhyar, A.; Zulkifley, M.A.; Lee, J.; Song, T.; Han, J.; Cho, C.; Hyun, S.; Son, Y.; Hong, B.W. Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecol. Indic. 2024, 163, 112067. [Google Scholar] [CrossRef]
- Chen, C.-W.; Tseng, Y.-S.; Mukundan, A.; Wang, H.-C. Air Pollution: Sensitive Detection of PM2.5 and PM10 Concentration Using Hyperspectral Imaging. Appl. Sci. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Alboody, A.; Vandenbroucke, N.; Porebski, A.; Sawan, R.; Viudes, F.; Doyen, P.; Amara, R. A New Remote Hyperspectral Imaging System Embedded on an Unmanned Aquatic Drone for the Detection and Identification of Floating Plastic Litter Using Machine Learning. Remote Sens. 2023, 15, 3455. [Google Scholar] [CrossRef]
- Zhang, J.; Su, R.; Fu, Q.; Ren, W.; Heide, F.; Nie, Y. A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging. Sci. Rep. 2022, 12, 11905. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Hou, R.; Ming, L.; Meifang, S.; Chen, P. A hyperspectral image reconstruction algorithm based on RGB image using multi-scale atrous residual convolution network. Front. Mar. Sci. 2023, 9, 1006452. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Monjur, O.; Kamruzzaman, M. Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product. J. Food Eng. 2024, 382, 112223. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, X.; Li, S.; Shi, X. R2H-CCD: Hyperspectral Imagery Generation from RGB Images Based on Conditional Cascade Diffusion Probabilistic Models. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 7392–7395. [Google Scholar] [CrossRef]
- Li, C.; Xiao, Z.; Wang, S. Multi-scale hyperspectral recovery networks: RGB-hyperspectral imaging consistency empowered deep spectral super-resolution. Opt. Express 2024, 32, 23392–23403. [Google Scholar] [CrossRef]
- Sharma, N.; Hefeeda, M. Hyperspectral reconstruction from RGB images for vein visualization. In Proceedings of the 11th ACM Multimedia Systems Conference, in MMSys ’20, Istanbul, Turkey, 8–11 June 2010; Association for Computing Machinery: New York, NY, USA, 2020; pp. 77–87. [Google Scholar] [CrossRef]
- Leung, J.-H.; Tsao, Y.M.; Karmakar, R.; Mukundan, A.; Lu, S.C.; Huang, S.Y.; Saenprasarn, P.; Lo, C.H.; Wang, H.C. Water pollution classification and detection by hyperspectral imaging. Opt. Express 2024, 32, 23956–23965. [Google Scholar] [CrossRef]
- Li, Z.; Yang, R.; Dang, F.; Du, P.; Zhang, X.; Tan, B.; Zhao, H.; Su, H. A review on the geological applications of hyperspectral remote sensing technology. In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, 4–7 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Qian, S.E. Overview of Hyperspectral Imaging Remote Sensing from Satellites. In Advances in Hyperspectral Image Processing Techniques; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Hyperspectral Remote Sensing in Lithological Mapping, Mineral Exploration, and Environmental Geology: An Updated Review. J. Appl. Remote Sens. 2021, 15, 031501.
- Hajaj, S.; El Harti, A.; Pour, A.B.; Jellouli, A.; Adiri, Z.; Hashim, M. A review on hyperspectral imagery application for lithological mapping and mineral prospecting: Machine learning techniques and future prospects. Remote Sens. Appl. Soc. Environ. 2024, 35, 101218. [Google Scholar] [CrossRef]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef]
- Booysen, R.; Lorenz, S.; Thiele, S.T.; Fuchsloch, W.C.; Marais, T.; Nex, P.A.; Gloaguen, R. Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia. Remote Sens. Environ. 2022, 269, 112790. [Google Scholar] [CrossRef]
- Vella, H. Mapping Minerals Remotely: How Hyperspectral Imaging Can Support Exploration. Mining Technology. Available online: https://www.mining-technology.com/features/mapping-minerals-remotely-how-hyperspectral-imaging-can-support-exploration/ (accessed on 9 July 2024).
- Long, T.; Zhou, Z.; Hancke, G.; Bai, Y.; Gao, Q. A Review of Artificial Intelligence Technologies in Mineral Identification: Classification and Visualization. J. Sens. Actuator Netw. 2022, 11, 50. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Okada, N.; Maekawa, Y.; Owada, N.; Haga, K.; Shibayama, A.; Kawamura, Y. Automated Identification of Mineral Types and Grain Size Using Hyperspectral Imaging and Deep Learning for Mineral Processing. Minerals 2020, 10, 809. [Google Scholar] [CrossRef]
- de Cássia Mariotti, K.; Ortiz, R.S.; Ferrão, M.F. Hyperspectral imaging in forensic science: An overview of major application areas. Sci. Justice 2023, 63, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Chango, X.; Flor-Unda, O.; Gil-Jiménez, P.; Gómez-Moreno, H. Technology in Forensic Sciences: Innovation and Precision. Technologies 2024, 12, 120. [Google Scholar] [CrossRef]
- Klasén, L.; Fock, N.; Forchheimer, R. The invisible evidence: Digital forensics as key to solving crimes in the digital age. Forensic Sci. Int. 2024, 362, 112133. [Google Scholar] [CrossRef]
- Ahmed, O.; Saleem, S.A.; Khan, A.A.; Daruwala, S.; Pettiwala, A. Artificial intelligence in forensic odontology—A review. Int. Dent. J. Stud. Res. 2023, 11, 54–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Huang, J.; Deng, K.; Zhang, J.; Qin, Z.; Wang, Z.; Zhang, X.; Tuo, Y.; Chen, L.; et al. Digital Whole-Slide Image Analysis for Automated Diatom Test in Forensic Cases of Drowning Using a Convolutional Neural Network Algorithm. Forensic Sci. Int. 2019, 302, 109922. [Google Scholar] [CrossRef]
- Galante, N.; Cotroneo, R.; Furci, D.; Lodetti, G.; Casali, M.B. Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. Int. J. Legal Med. 2023, 137, 445–458. [Google Scholar] [CrossRef]
- Luo, Z.; Shafait, F.; Mian, A. Localized forgery detection in hyperspectral document images. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 496–500. [Google Scholar] [CrossRef]
- Rastogi, V.; Srivastava, S.; Jaiswal, G.; Sharma, A. Detecting Document Forgery Using Hyperspectral Imaging and Machine Learning. In Computer Vision and Image Processing; Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 14–25. [Google Scholar] [CrossRef]
- Głomb, P.; Romaszewski, M.; Cholewa, M.; Domino, K. Application of hyperspectral imaging and machine learning methods for the detection of gunshot residue patterns. Forensic Sci. Int. 2018, 290, 227–237. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Książek, K.; Romaszewski, M.; Głomb, P.; Grabowski, B.; Cholewa, M. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks. Sensors 2020, 20, 6666. [Google Scholar] [CrossRef] [PubMed]
- Grigoroiu, A.; Yoon, J.; Bohndiek, S.E. Deep learning applied to hyperspectral endoscopy for online spectral classification. Sci. Rep. 2020, 10, 3947. [Google Scholar] [CrossRef] [PubMed]
- Fei, B. Chapter 3.6—Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Hyperspectral Imaging; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 523–565. [Google Scholar] [CrossRef]
- Guraya, S.Y. Transforming simulation in healthcare to enhance interprofessional collaboration leveraging big data analytics and artificial intelligence. BMC Med. Educ. 2024, 24, 941. [Google Scholar] [CrossRef] [PubMed]
- Malešević, A.; Kolesárová, M.; Čartolovni, A. Encompassing trust in medical AI from the perspective of medical students: A quantitative comparative study. BMC Med. Ethics 2024, 25, 94. [Google Scholar] [CrossRef]
- Lemmens, S.; De Groef, L.; Charle, W.; Jayapala, M.; Theunis, J.; Moons, L.; De Boever, P.; Stalmans, I. How Hyperspectral Imaging and Artificial Intelligence Transform Alzheimer’s Diagnosis. Spectrosc. Europe.-Weinh. 1992, 33, 18–23. [Google Scholar] [CrossRef]
- Sullivan, R.; Alatise, O.I.; Anderson, B.O.; Audisio, R.; Autier, P.; Aggarwal, A.; Balch, C.; Brennan, M.F.; Dare, A.; D’Cruz, A.; et al. Global cancer surgery: Delivering safe, affordable, timely cancer surgery. Lancet Oncol. 2015, 16, 1193–1224. [Google Scholar] [CrossRef]
- Hwang, J.; Cheney, P.; Kanick, S.C.; Le, H.N.; McClatchy, D.M., III; Zhang, H.; Liu, N.; John Lu, Z.Q.; Cho, T.J.; Briggman, K.; et al. Hyperspectral dark-field microscopy of human breast lumpectomy samples for tumor margin detection in breast-conserving surgery. J. Biomed. Opt. 2024, 29, 093503. [Google Scholar] [CrossRef]
- Shapey, J.; Xie, Y.; Nabavi, E.; Bradford, R.; Saeed, S.R.; Ourselin, S.; Vercauteren, T. Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J. Biophotonics 2019, 12, e201800455. [Google Scholar] [CrossRef]
- Ji, Y.; Park, S.M.; Kwon, S.; Leem, J.W.; Nair, V.V.; Tong, Y.; Kim, Y.L. mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics. PNAS Nexus 2023, 2, pgad111. [Google Scholar] [CrossRef]
- Vananti, A.; Schildknecht, T.; Krag, H. Reflectance Spectroscopy Characterization of Space Debris. Adv. Space Res. 2017, 59, 2488–2500. [Google Scholar] [CrossRef]
- Willison, A.; Bédard, D. A novel approach to modeling spacecraft spectral reflectance. Adv. Space Res. 2016, 58, 1318–1330. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, H.Y.; Yu, Y.; Mao, Y.D. Multicolor Photometry of Geosynchronous Satellites and Application on Feature Recognition. Adv. Space Res. 2016, 58, 2269–2279. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Kurosaki, H. Shape and motion estimate of LEO debris using light curves. Adv. Space Res. 2012, 50, 136–145. [Google Scholar] [CrossRef]
- Zhu, B.; Lin, S.; Zhu, Y.; Wang, X. Collaborative Hyperspectral Image Processing Using Satellite Edge Computing. IEEE Trans. Mob. Comput. 2024, 23, 2241–2253. [Google Scholar] [CrossRef]
- Vasile, M.; Walker, L.; Dunphy, R.D.; Zabalza, J.; Murray, P.; Marshall, S.; Savitski, V. Intelligent characterisation of space objects with hyperspectral imaging. Acta Astronaut. 2023, 203, 510–534. [Google Scholar] [CrossRef]
- Lin, C.-H.; Huang, S.-H.; Lin, T.-H.; Wu, P.C. Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory. Nat. Commun. 2023, 14, 6979. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Xu, M.; Yu, S. A survey: Deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 2021, 448, 179–204. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Xia, K.; Ma, Y.; Yuan, G. Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks. Sensors 2024, 24, 2664. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Skidanov, R.V.; Butt, M.A. Exploring Types of Photonic Neural Networks for Imaging and Computing—A Review. Nanomaterials 2024, 14, 697. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.; Naughton, T.J. Photonic neural networks. Nat. Phys. 2012, 8, 257–259. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Mangotra, H.; Srivastava, S.; Jaiswal, G.; Rani, R.; Sharma, A. Hyperspectral Imaging for Early Diagnosis of Diseases: A Review. Expert Syst. 2023, 40, e13311. [Google Scholar] [CrossRef]
Characteristics | Whiskbroom | Push Broom | Fourier Transform Spectroscopy | Spectral Scanning | HS Snapshot Cameras |
---|---|---|---|---|---|
Scanning Method | Point-by-point | Line-by-line | Full spectrum at a single point | Wavelength-by-wavelength | Full image at once |
Data Acquisition | Sequential, point-by-point | Sequential, line-by-line | Simultaneous full spectrum | Sequential, band-by-band | Simultaneous, full spatial-spectral |
Speed | Slow | Moderate | Moderate | Slow to moderate | Fast |
Spatial Resolution | High | Moderate to high | High (single point) | High | Moderate |
Spectral Resolution | High | High | Very high | High | Moderate |
Complexity | High (moving parts) | Moderate (moving parts) | High (requires precise optics) | Moderate (requires precise optics) | Low to moderate (no moving parts) |
Portability | Low (bulky and heavy) | Moderate | Low (bulky and sensitive) | Moderate | High (compact and lightweight) |
Applications | Laboratory, field spectroscopy | Remote sensing, environmental | Laboratory, chemical analysis | Laboratory, remote sensing | Real-time imaging, medical diagnostics |
Advantages | High accuracy and detail | Efficient for large areas | High spectral resolution | Detailed spectral information | Fast and efficient data capture |
Disadvantages | Slow, not suitable for dynamic scenes | Moderate speed, complex calibration | Bulky, complex, and expensive | Time-consuming, sensitive to motion | Lower spectral resolution compared with others |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N.; Kazanskiy, N.L.; Oseledets, I.V.; Nikonorov, A.V.; Butt, M.A. Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review. Technologies 2024, 12, 163. https://doi.org/10.3390/technologies12090163
Khonina SN, Kazanskiy NL, Oseledets IV, Nikonorov AV, Butt MA. Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review. Technologies. 2024; 12(9):163. https://doi.org/10.3390/technologies12090163
Chicago/Turabian StyleKhonina, Svetlana N., Nikolay L. Kazanskiy, Ivan V. Oseledets, Artem V. Nikonorov, and Muhammad A. Butt. 2024. "Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review" Technologies 12, no. 9: 163. https://doi.org/10.3390/technologies12090163
APA StyleKhonina, S. N., Kazanskiy, N. L., Oseledets, I. V., Nikonorov, A. V., & Butt, M. A. (2024). Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review. Technologies, 12(9), 163. https://doi.org/10.3390/technologies12090163