Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net
Abstract
:1. Introduction
- An enhanced deep-learning model capable of identifying areas where deforestation has occurred is proposed.
- A customized dataset of high-spatial resolution satellite images is constructed to facilitate the evaluation of algorithms for robust change detection in forest areas.
- The feature learning of the U-Net is improved with the help of residual learning modules.
- A novel attention mechanism for sequential satellite images is proposed to minimize both the additional parameters needed to train the model to detect changes and the data needed for auxiliary tasks.
2. Related Work
3. Materials and Methods
3.1. Proposed Novel Pipeline
3.2. Data Collection
3.3. Preprocessing
3.4. Change Detection Algorithm
- Segmentation is adept at detecting random shapes and natural variations, such as curves, without the need for predefined shapes.
- Changes in images are often infrequent and subtle, requiring a method capable of identifying these small differences.
Algorithm 1 ResNeSt-based U-Net Algorithm |
Training set: train_x Labels of training data: train_y Require: train_x and train_y Ensure: Segmented maps m Kk while
do while do batch_x batch_y while do W(x_) ▹ Apply attention-enhanced ResNeSt blocks on input x_n end while while do W(q_) ▹Apply attention-enhanced ResNeSt blocks in decoder x_n x_n y_pred end while back-propagation Adjust the parameter to optimize loss function end while end while return and y_pred |
4. Results and Discussion
4.1. Performance Evaluation
4.2. Performance Evaluation of U-Net Architectures without the Attention Mechanism
4.3. Performance Evaluation of U-Net Architectures with the Attention Mechanism
4.4. Performance Comparison with ONERA and HRSCD Datasets
4.5. Visual Representation of Change Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silvestro, R.; Zeng, Q.; Buttò, V.; Sylvain, J.-D.; Drolet, G.; Mencuccini, M.; Thiffault, N.; Yuan, S.; Rossi, S. A longer wood growing season does not lead to higher carbon sequestration. Sci. Rep. 2023, 13, 4059. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yan, J.; Liang, D.; Sun, Z.; Li, J.; Wang, L. Time-series land cover change detection using deep learning-based temporal semantic segmentation. Remote Sens. Environ. 2024, 305, 114101. [Google Scholar] [CrossRef]
- Pardo, A.; Rolo, V.; Carrascosa, A.; Gonzalez-Bornay, G.; Moreno, G. Management linked to ecological intensification supports insect pollinators in Iberian wood-pastures. Landsc. Ecol. 2023, 38, 3389–3403. [Google Scholar] [CrossRef]
- Waters, S.; Atalah, J.; Thompson, L.; Thomson-Laing, G.; Pearman, J.K.; Puddick, J.; Howarth, J.D.; Reyes, L.; Vandergoes, M.J.; Wood, S.A. It’s all in the mud—The use of sediment geochemistry to estimate contemporary water quality in lakes. Appl. Geochem. 2023, 153, 105667. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Wang, M. Construction of ecological security pattern of national ecological barriers for ecosystem health maintenance. Ecol. Indic. 2023, 146, 109801. [Google Scholar] [CrossRef]
- Pour, M.D.; Barati, A.A.; Azadi, H.; Scheffran, J.; Shirkhani, M. Analyzing forest residents’ perception and knowledge of forest ecosystem services to guide forest management and biodiversity conservation. For. Policy Econ. 2023, 146, 102866. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Steel, Z.L.; Jones, G.M.; Collins, B.M.; Green, R.; Koltunov, A.; Purcell, K.L.; Sawyer, S.C.; Slaton, M.R.; Stephens, S.L.; Stine, P.; et al. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol. Appl. 2022, 33, e2763. [Google Scholar] [CrossRef]
- Ullah, S.A.; Asahiro, K.; Moriyama, M.; Tsuchiya, J.; Rahman, M.A.; Mary, M.; Tani, M. Causes and consequences of forest cover transformation on human-wildlife interaction in the Teknaf Wildlife Sanctuary, Bangladesh. Trees For. People 2024, 15, 100476. [Google Scholar] [CrossRef]
- Debebe, B.; Senbeta, F.; Teferi, E.; Diriba, D.; Teketay, D. Analysis of Forest Cover Change and Its Drivers in Biodiversity Hotspot Areas of the Semien Mountains National Park, Northwest Ethiopia. Sustainability 2023, 15, 3001. [Google Scholar] [CrossRef]
- Gaire, A.; Acharya, K.P. Understanding human-wildlife conflict in Nepal and its mitigating measures. Isr. J. Ecol. Evol. 2023, 70, 69–74. [Google Scholar] [CrossRef]
- Seidl, R.; Turner, M.G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef] [PubMed]
- Belete, F.; Maryo, M.; Teka, A. Land use/land cover dynamics and perception of the local communities in Bita district, south western Ethiopia. Int. J. River Basin Manag. 2021, 21, 211–222. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z.; Cao, K.; Deng, L.; Zhang, W.; Xie, C.; Yang, S.; Yue, P.; Zhong, J.; Lyu, J.; et al. Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning. Comput. Methods Programs Biomed. 2023, 233, 107466. [Google Scholar] [CrossRef]
- Johnson, D.M.; Haynes, K.J. Spatiotemporal dynamics of forest insect populations under climate change. Curr. Opin. Insect Sci. 2023, 56, 101020. [Google Scholar] [CrossRef]
- Zhu, L.; Xue, Q.; Ma, G.; Ma, C.-S. Climate warming exacerbates plant disease through enhancing commensal interaction of co-infested insect vectors. J. Pest Sci. 2022, 96, 945–959. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Wang, S. Transferred Deep Learning for Sea Ice Change Detection From Synthetic-Aperture Radar Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1655–1659. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Chen, G.; Dai, F.; Gong, Y.; Zhu, K. Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sens. Lett. 2018, 9, 923–932. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Special Section Guest Editorial: Feature and Deep Learning in Remote Sensing Applications. J. Appl. Remote Sens. 2018, 11, 1. [Google Scholar] [CrossRef]
- Geng, J.; Wang, H.; Fan, J.; Ma, X. Change detection of SAR images based on supervised contractive autoencoders and fuzzy clustering. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [Google Scholar] [CrossRef]
- Gong, J.; Hu, X.; Pang, S.; Wei, Y. Roof-Cut Guided Localization for Building Change Detection from Imagery and Footprint Map. Photogramm. Eng. Remote Sens. 2019, 85, 543–558. [Google Scholar] [CrossRef]
- Du, Z.; Li, X.; Miao, J.; Huang, Y.; Shen, H.; Zhang, L. Concatenated Deep-Learning Framework for Multitask Change Detection of Optical and SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 719–731. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.; Liu, L.; Chen, Y.; Liu, H.; Song, X.; Xu, Z. Advances in the study of global forest wildfires. J. Soils Sediments 2023, 23, 2654–2668. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer learning in environmental remote sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Xu, L.; Yu, J. The data-based adaptive graph learning network for analysis and prediction of offshore wind speed. Energy 2023, 267, 126590. [Google Scholar] [CrossRef]
- Al-Iiedane, H.A.; Mahameed, A.I. Satellite images for roads using transfer learning. Meas. Sens. 2023, 27, 100775. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Li, Z.; Li, D. A review of multi-class change detection for satellite remote sensing imagery. Geo-Spat. Inf. Sci. 2022, 27, 1–15. [Google Scholar] [CrossRef]
- Farooq, B.; Manocha, A. Satellite-based change detection in multi-objective scenarios: A comprehensive review. Remote Sens. Appl. Soc. Environ. 2024, 34, 101168. [Google Scholar] [CrossRef]
- Shi, R.; Yang, S.; Chen, Y.; Wang, R.; Zhang, M.; Lu, J.; Cao, Y. CNN-Transformer for visual-tactile fusion applied in road recognition of autonomous vehicles. Pattern Recognit. Lett. 2023, 166, 200–208. [Google Scholar] [CrossRef]
- Gad, E.; Soliman, S.; Darweesh, M.S. Advancing Brain Tumor Segmentation via Attention-Based 3D U-Net Architecture and Digital Image Processing. In Proceedings of the 12th International Conference on Model and Data Engineering, Sousse, Tunisia, 2–4 November 2023; Springer Nature: Cham, Switzerland, 2023; pp. 245–258. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Yeung, M.; Sala, E.; Schönlieb, C.-B.; Rundo, L. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput. Biol. Med. 2021, 137, 104815. [Google Scholar] [CrossRef] [PubMed]
- Garnot, V.S.F.; Landrieu, L. Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks. arXiv 2021, arXiv:2107.07933v4. [Google Scholar]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://www.google.com/earth/ (accessed on 14 June 2024).
- Deforestation Fronts. WWF. Available online: https://shorturl.at/sAOfD (accessed on 14 June 2024).
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention Networks. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. OSCD-Onera Satellite Change Detection; IEEE DataPort: Piscataway, NJ, USA, 2019. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
Metric | Equation |
---|---|
Overall Accuracy | (TP + TN)/(TP + TN + FP + FN) |
Precision | TP/(TP + FP) |
Recall | TP/(TP + FN) |
Dice | 2*TP/(2*TP + FP + FN) |
Kappa | ()/() |
Early Fusion Network | Siam Network | |||||||
---|---|---|---|---|---|---|---|---|
Model | Dice | Kappa | F1 | Accuracy | Dice | Kappa | F1 | Accuracy |
Baseline | 32.36 | 26.97 | 33.68 | 89.41 | 33.68 | 28.25 | 35.90 | 87.41 |
Residual block | 32.94 | 28.39 | 36.09 | 87.70 | 33.65 | 29.25 | 36.91 | 88.34 |
ResNeXt block | 33.59 | 28.55 | 36.01 | 90.17 | 34.64 | 30.76 | 39.54 | 90.40 |
ResNeSt block | 36.49 | 29.98 | 39.39 | 95.19 | 37.55 | 33.43 | 39.90 | 93.27 |
Baseline + SE attention | 33.3 | 26.89 | 34.8 | 88.55 | 33.68 | 23.95 | 31.1 | 87.66 |
Residual block + SE attention | 34.50 | 28.78 | 37.14 | 87.63 | 31.36 | 26.50 | 33.87 | 87.38 |
ResNeXt block + SE attention | 33.48 | 28.43 | 36.60 | 89.87 | 33.31 | 28.83 | 36.54 | 88.50 |
ResNeSt block + SE attention | 37.02 | 32.27 | 40.08 | 91.39 | 39.03 | 35.13 | 42.84 | 94.37 |
Baseline + FCA attention | 29.63 | 14.31 | 28.22 | 87.34 | 33.68 | 29.71 | 33.43 | 88.96 |
Residual block + FCA attention | 34.53 | 29.97 | 37.18 | 88.07 | 34.09 | 28.64 | 36.92 | 89.04 |
ResNeXt block + FCA attention | 28.86 | 23.21 | 30.71 | 81.65 | 34.00 | 29.78 | 37.23 | 89.16 |
ResNeSt block + FCA attention | 38.26 | 34.52 | 42.26 | 94.47 | 39.27 | 32.51 | 40.07 | 93.12 |
Baseline + additive attention | 21.32 | 23.7 | 32.41 | 88.01 | 33.68 | 27.21 | 30.22 | 90.88 |
Residual block + additive attention | 34.86 | 30.53 | 37.94 | 88.45 | 34.37 | 30.38 | 37.64 | 90.30 |
ResNeXt block + additive attention | 33.99 | 28.64 | 36.59 | 88.49 | 34.79 | 30.89 | 39.38 | 89.74 |
ResNeSt block + additive attention | 32.49 | 28.09 | 35.79 | 88.45 | 33.25 | 29.35 | 36.44 | 89.93 |
Baseline + strip pool attention | 33.36 | 23.45 | 34.5 | 83.22 | 33.68 | 31.5 | 34.97 | 56.32 |
Residual block + strip pool attention | 29.87 | 24.88 | 33.31 | 85.96 | 29.66 | 22.91 | 29.64 | 85.79 |
ResNeXt block + strip pool attention | 30.63 | 24.68 | 33.04 | 86.56 | 32.94 | 28.72 | 35.65 | 89.36 |
ResNeSt block + strip pool attention | 20.46 | 14.87 | 22.32 | 88.78 | 12.97 | 5.18 | 13.76 | 60.01 |
Early Fusion Network | Siam Network | |||
---|---|---|---|---|
Model | Training Time | Testing Time | Training Time | Testing Time |
Baseline | 192.29 | 8.97 | 164.02 | 4.47 |
Residual block | 198.38 | 7.96 | 153.83 | 4.11 |
ResNeXt block | 186.21 | 7.06 | 156.79 | 3.97 |
ResNeSt block | 200.84 | 7.20 | 139.56 | 3.52 |
Baseline + SE attention | 215.37 | 8.81 | 130.73 | 4.17 |
Residual block + SE attention | 217.47 | 7.44 | 139.16 | 3.77 |
ResNeXt block + SE attention | 191.57 | 7.45 | 131.02 | 3.61 |
ResNeSt block + SE attention | 185.12 | 7.96 | 152.11 | 4.43 |
Baseline + FCA attention | 229.89 | 7.81 | 153.25 | 3.96 |
Residual block + FCA attention | 211.94 | 7.11 | 154.60 | 3.50 |
ResNeXt block + FCA attention | 201.53 | 8.39 | 126.33 | 4.41 |
ResNeSt block + FCA attention | 189.10 | 7.94 | 154.21 | 3.72 |
Baseline + additive attention | 206.60 | 7.62 | 135.15 | 3.85 |
Residual block + additive attention | 237.54 | 8.48 | 158.63 | 4.15 |
ResNeXt block + additive attention | 197.21 | 7.32 | 125.19 | 4.22 |
ResNeSt block + additive attention | 183.48 | 7.28 | 151.50 | 3.81 |
Baseline + strip pool attention | 185.95 | 8.69 | 129.91 | 3.90 |
Residual block + strip pool attention | 225.22 | 7.11 | 126.05 | 3.59 |
ResNeXt block + strip pool attention | 203.52 | 8.95 | 141.70 | 4.17 |
ResNeSt block + strip pool attention | 214.28 | 8.30 | 142.98 | 4.14 |
Type | Network | Prec. | Recall | Dice | Tot. Acc. |
---|---|---|---|---|---|
Siam network | FC-EF | 44.72 | 53.92 | 48.89 | 94.23 |
FC-Siam-conc | 42.89 | 47.77 | 45.20 | 94.07 | |
FC-Siam-diff | 49.81 | 47.94 | 48.86 | 94.86 | |
FC-EF-Res | 52.27 | 68.24 | 59.20 | 95.34 | |
ResNeSt block (SE)–proposed | 53.32 | 53.99 | 59.97 | 97.82 |
Type | Network | Dice | Kappa | Tot. Acc. |
---|---|---|---|---|
Siam network | Str. 1 | 5.56 | 3.99 | 86.07 |
Str. 2 | - | 21.54 | 98.30 | |
Str. 3 | 13.79 | 12.48 | 94.72 | |
Str. 4.1 | 20.23 | 19.13 | 96.87 | |
Str. 4.2 | 26.33 | 25.49 | 98.19 | |
CNNF-O | 2.43 | 0.74 | 64.54 | |
CNNF-F | 4.84 | 3.28 | 88.66 | |
PCA + KM | 2.31 | 0.67 | 98.19 | |
ResNeSt block (SE)–proposed | 44.62 | 11.97 | 98.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hewarathna, A.I.; Hamlin, L.; Charles, J.; Vigneshwaran, P.; George, R.; Thuseethan, S.; Wimalasooriya, C.; Shanmugam, B. Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net. Technologies 2024, 12, 160. https://doi.org/10.3390/technologies12090160
Hewarathna AI, Hamlin L, Charles J, Vigneshwaran P, George R, Thuseethan S, Wimalasooriya C, Shanmugam B. Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net. Technologies. 2024; 12(9):160. https://doi.org/10.3390/technologies12090160
Chicago/Turabian StyleHewarathna, Ashen Iranga, Luke Hamlin, Joseph Charles, Palanisamy Vigneshwaran, Romiyal George, Selvarajah Thuseethan, Chathrie Wimalasooriya, and Bharanidharan Shanmugam. 2024. "Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net" Technologies 12, no. 9: 160. https://doi.org/10.3390/technologies12090160
APA StyleHewarathna, A. I., Hamlin, L., Charles, J., Vigneshwaran, P., George, R., Thuseethan, S., Wimalasooriya, C., & Shanmugam, B. (2024). Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net. Technologies, 12(9), 160. https://doi.org/10.3390/technologies12090160