Explainable Graph Neural Networks: An Application to Open Statistics Knowledge Graphs for Estimating House Prices
Abstract
:1. Introduction
2. Background
2.1. House Prices Prediction
2.2. Open Government Data
2.2.1. Linked Open Government Data
- Dimensions (qb:DimensionProperty) that define the aspects to which the observations are applicable. Examples of dimensions include gender, reference area, time, and age.
- Measures (qb:MeasureProperty) that represent the specific phenomena or variables that are being observed and recorded within the data cube.
- Attributes (qb:AttributeProperty) that are used to convey structural metadata, such as the unit of measurement, associated with the data.
2.2.2. The Scottish Data Portal
2.3. Graph Neural Networks
2.3.1. Spectral Methods
2.3.2. Spatial Methods
2.4. Explainability of Graph Neural Networks
3. Research Approach
4. Using Explainable Graph Neural Networks to Predict the House Prices in Scottish Data Zones
4.1. Collect Data
4.2. Pre-Process Data
4.3. House Price Prediction with Graph Neural Networks
4.4. Explainability
4.4.1. Global Explainability
4.4.2. Local Explainability
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Theme | Statistical Indicator | Details/ Type |
---|---|---|
Access to Services | Travel times to GP surgeries by public transport | Minutes/Numeric |
Travel times to post office by public transport | Minutes/Numeric | |
Travel times to retail centre by public transport | Minutes/Numeric | |
Travel times to petrol station by car | Minutes/Numeric | |
Travel times to post office by car | Minutes/Numeric | |
Travel times to GP surgeries by car | Minutes/Numeric | |
Travel times to primary school by car | Minutes/Numeric | |
Travel times to secondary school by car | Minutes/Numeric | |
Travel times to retail centre by car | Minutes/Numeric | |
Crime and Justice | Chimney fires | Ratio/Numeric |
Dwelling fires | Ratio/Numeric | |
Other building fires | Ratio/Numeric | |
Other primary fires | Ratio/Numeric | |
Outdoor fires | Ratio/Numeric | |
Refuse fires | Ratio/Numeric | |
Vehicle fires | Ratio/Numeric | |
Accidental chimney fires | Ratio/Numeric | |
Accidental dwelling fires | Ratio/Numeric | |
Accidental other building fires | Ratio/Numeric | |
Accidental other primary fires | Ratio/Numeric | |
Accidental outdoor fires | Ratio/Numeric | |
Accidental refuse fires | Ratio/Numeric | |
Accidental vehicle fires | Ratio/Numeric | |
Not accidental chimney fires | Ratio/Numeric | |
Not accidental dwelling fires | Ratio/Numeric | |
Not accidental other building fires | Ratio/Numeric | |
Not accidental other primary fires | Ratio/Numeric | |
Not accidental outdoor fires | Ratio/Numeric | |
Not accidental refuse fires | Ratio/Numeric | |
Not accidental vehicle fires | Ratio/Numeric | |
Crime indicators | Ratio/Numeric | |
Economic Activity, Benefits, and Tax Credits | Children 0–15 living in low-income families | Ratio/Numeric |
Children 0–19 living in low-income families | Ratio/Numeric | |
Age of first-time mothers 19 years and under | Ratio/Numeric | |
Age of first-time mothers 35 years and older | Ratio/Numeric | |
Employment deprivation | Ratio/Numeric | |
Education, Skills, and Training | School attendance | Ratio/Numeric |
Educational attainment of school leavers | Score/Numeric | |
Geography | Land area | Hectares/Numeric |
Urban rural classification | 6-fold/Categorical | |
Health and Social Care | Mothers currently smoking | Ratio/Numeric |
Mothers former smokers | Ratio/Numeric | |
Mothers never smoked | Ratio/Numeric | |
Low birth-weight (less than 2500 g) babies (single births) | Ratio/Numeric | |
Not known if mothers smoked | Ratio/Numeric | |
Comparative illness factor | –/Integer | |
Housing | Dwellings per hectare | Ratio/Numeric |
Detached dwellings | Ratio/Numeric | |
Flats | Ratio/Numeric | |
Semi-detached dwellings | Ratio/Numeric | |
Terraced dwellings | Ratio/Numeric | |
Dwellings of unknown type | Ratio/Numeric | |
Long-term empty households | Ratio/Numeric | |
Occupied households | Ratio/Numeric | |
Second-home households | Ratio/Numeric | |
Vacant households | Ratio/Numeric | |
Households with occupied exemptions | Ratio/Numeric | |
Households with unoccupied exemptions | Ratio/Numeric | |
Households with single adult discounts | Ratio/Numeric |
Comparison | Metric | t-Statistic | p-Value |
---|---|---|---|
GraphSAGE vs. GCN | Accuracy | 10.203722 | |
GraphSAGE vs. GCN | Precision | 9.183735 | |
GraphSAGE vs. GCN | Recall | 8.531244 | |
GraphSAGE vs. GCN | F1 | 9.622985 | |
GraphSAGE vs. GCN | ROC-AUC | 15.862256 | |
GraphSAGE vs. ChebNET | Accuracy | 15.184385 | |
GraphSAGE vs. ChebNET | Precision | 10.012552 | |
GraphSAGE vs. ChebNET | Recall | 12.661661 | |
GraphSAGE vs. ChebNET | F1 | 9.778460 | |
GraphSAGE vs. ChebNET | ROC-AUC | 9.956104 | |
GraphSAGE vs. XGBoost | Accuracy | 14.172647 | |
GraphSAGE vs. XGBoost | Precision | 9.746166 | |
GraphSAGE vs. XGBoost | Recall | 18.184365 | |
GraphSAGE vs. XGBoost | F1 | 11.667883 | |
GraphSAGE vs. XGBoost | ROC-AUC | 7.186115 | |
GraphSAGE vs. MLP | Accuracy | 20.814211 | |
GraphSAGE vs. MLP | Precision | 18.070265 | |
GraphSAGE vs. MLP | Recall | 21.193442 | |
GraphSAGE vs. MLP | F1 | 19.587716 | |
GraphSAGE vs. MLP | ROC-AUC | 8.411927 | |
GCN vs. ChebNET | Accuracy | 2.949306 | |
GCN vs. ChebNET | Precision | 1.905649 | |
GCN vs. ChebNET | Recall | 3.255215 | |
GCN vs. ChebNET | F1 | 0.065378 | |
GCN vs. ChebNET | ROC-AUC | −6.174785 | |
GCN vs. XGBoost | Accuracy | 4.771361 | |
GCN vs. XGBoost | Precision | 1.649143 | |
GCN vs. XGBoost | Recall | 7.258198 | |
GCN vs. XGBoost | F1 | 3.736712 | |
GCN vs. XGBoost | ROC-AUC | −9.460600 | |
GCN vs. MLP | Accuracy | 9.801749 | |
GCN vs. MLP | Precision | 10.488417 | |
GCN vs. MLP | Recall | 9.452620 | |
GCN vs. MLP | F1 | 12.171377 | |
GCN vs. MLP | ROC-AUC | −7.182763 | |
ChebNET vs. XGBoost | Accuracy | 3.137682 | |
ChebNET vs. XGBoost | Precision | −0.121202 | |
ChebNET vs. XGBoost | Recall | 3.416474 | |
ChebNET vs. XGBoost | F1 | 3.960737 | |
ChebNET vs. XGBoost | ROC-AUC | −3.098158 | |
ChebNET vs. MLP | Accuracy | 8.517380 | |
ChebNET vs. MLP | Precision | 6.984752 | |
ChebNET vs. MLP | Recall | 7.597748 | |
ChebNET vs. MLP | F1 | 11.477786 | |
ChebNET vs. MLP | ROC-AUC | −1.054002 | |
XGBoost vs. MLP | Accuracy | 5.436311 | |
XGBoost vs. MLP | Precision | 6.991994 | |
XGBoost vs. MLP | Recall | 3.976198 | |
XGBoost vs. MLP | F1 | 6.532380 | |
XGBoost vs. MLP | ROC-AUC | 2.148373 |
References
- Égert, B.; Mihaljek, D. Determinants of House Prices in Central and Eastern Europe. Comp. Econ. Stud. 2007, 49, 367–388. [Google Scholar] [CrossRef]
- Hromada, E.; Čermáková, K.; Piecha, M. Determinants of House Prices and Housing Affordability Dynamics in the Czech Republic. Eur. J. Interdiscip. Stud. 2022, 14, 119–132. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Cocco, J.F. How do house prices affect consumption? Evidence from micro data. J. Monet. Econ. 2007, 54, 591–621. [Google Scholar] [CrossRef]
- Eurostat. Housing in Europe—2022 Interactive Edition; Eurostat: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Mbah, R.E.; Wasum, D.F. Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Adv. Soc. Sci. Res. J. 2022, 9, 144–153. [Google Scholar] [CrossRef]
- Pereira, P.; Zhao, W.; Symochko, L.; Inacio, M.; Bogunovic, I.; Barcelo, D. The Russian-Ukrainian armed conflict will push back the sustainable development goals. Geogr. Sustain. 2022, 3, 277–287. [Google Scholar] [CrossRef]
- Hoesli, M.; Malle, R. Commercial real estate prices and COVID-19. J. Eur. Real Estate Res. 2022, 15, 295–306. [Google Scholar] [CrossRef]
- Morano, P.; Tajani, F.; Guarini, M.R.; Di Liddo, F.; Anelli, D. A multivariate econometric analysis for the forecasting of the interdependences between the housing prices and the socio-economic factors in the city of Barcelona (Spain). In Proceedings of the Computational Science and Its Applications–ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, 1–4 July 2019; Springer: Cham, Switzerland, 2019; pp. 13–22. [Google Scholar]
- Truong, Q.; Nguyen, M.; Dang, H.; Mei, B. Housing Price Prediction via Improved Machine Learning Techniques. Procedia Comput. Sci. 2020, 174, 433–442. [Google Scholar] [CrossRef]
- Yang, L.; Chu, X.; Gou, Z.; Yang, H.; Lu, Y.; Huang, W. Accessibility and proximity effects of bus rapid transit on housing prices: Heterogeneity across price quantiles and space. J. Transp. Geogr. 2020, 88, 102850. [Google Scholar] [CrossRef]
- Song, Y.; Ma, X. Exploration of intelligent housing price forecasting based on the anchoring effect. Neural Comput. Appl. 2024, 36, 2201–2214. [Google Scholar] [CrossRef]
- Kiwelekar, A.W.; Mahamunkar, G.S.; Netak, L.D.; Nikam, V.B. Deep learning techniques for geospatial data analysis. In Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications; Springer: Cham, Switzerland, 2020; pp. 63–81. [Google Scholar]
- Chami, I.; Abu-El-Haija, S.; Perozzi, B.; Ré, C.; Murphy, K. Machine Learning on Graphs: A Model and Comprehensive Taxonomy. J. Mach. Learn. Res. 2022, 23, 1–64. [Google Scholar]
- Wu, Y.; Lian, D.; Xu, Y.; Wu, L.; Chen, E. Graph Convolutional Networks with Markov Random Field Reasoning for Social Spammer Detection. Proc. AAAI Conf. Artif. Intell. 2020, 34, 1054–1061. [Google Scholar] [CrossRef]
- Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [Google Scholar] [CrossRef]
- Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph neural networks in recommender systems: A survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Kalampokis, E.; Tambouris, E.; Tarabanis, K. A classification scheme for open government data: Towards linking decentralised data. Int. J. Web Eng. Technol. 2011, 6, 266–285. [Google Scholar] [CrossRef]
- Karamanou, A.; Kalampokis, E.; Tarabanis, K. Linked Open Government Data to Predict and Explain House Prices: The Case of Scottish Statistics Portal. Big Data Res. 2022, 30, 100355. [Google Scholar] [CrossRef]
- Law, S.; Paige, B.; Russell, C. Take a Look Around: Using Street View and Satellite Images to Estimate House Prices. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Chwiałkowski, C.; Zydroń, A. Socio-Economic and Spatial Characteristics of Wielkopolski National Park: Application of the Hedonic Pricing Method. Sustainability 2021, 13, 5001. [Google Scholar] [CrossRef]
- Wongleedee, K. Important marketing decision to purchase condominium: A case study of Bangkok, Thailand. Bus. Manag. Rev. 2017, 9, 122–125. [Google Scholar]
- Xiao, Y.; Chen, X.; Li, Q.; Yu, X.; Chen, J.; Guo, J. Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data. ISPRS Int. J. Geo-Inf. 2017, 6, 358. [Google Scholar] [CrossRef]
- Taecharungroj, V. Google Maps amenities and condominium prices: Investigating the effects and relationships using machine learning. Habitat Int. 2021, 118, 102463. [Google Scholar] [CrossRef]
- Levantesi, S.; Piscopo, G. The importance of economic variables on London real estate market: A random forest approach. Risks 2020, 8, 112. [Google Scholar] [CrossRef]
- Rico-Juan, J.R.; Taltavull de La Paz, P. Machine learning with explainability or spatial hedonics tools? An analysis of the asking prices in the housing market in Alicante, Spain. Expert Syst. Appl. 2021, 171, 114590. [Google Scholar] [CrossRef]
- Gollini, I.; Lu, B.; Charlton, M.; Brunsdon, C.; Harris, P. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. J. Stat. Softw. 2015, 63, 1–50. [Google Scholar] [CrossRef]
- Bourassa, S.C.; Cantoni, E.; Hoesli, M. Spatial Dependence, Housing Submarkets, and House Price Prediction. J. Real Estate Financ. Econ. 2007, 35, 143–160. [Google Scholar] [CrossRef]
- Bourassa, S.; Cantoni, E.; Hoesli, M. Predicting house prices with spatial dependence: A comparison of alternative methods. J. Real Estate Res. 2010, 32, 139–160. [Google Scholar] [CrossRef]
- Anselin, L.; Lozano-Gracia, N. Spatial hedonic models. In Palgrave Handbook of Econometrics; Palgrave Macmillan: London, UK, 2009; pp. 1213–1250. [Google Scholar]
- Park, B.; Bae, J.K. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Syst. Appl. 2015, 42, 2928–2934. [Google Scholar] [CrossRef]
- Varma, A.; Sarma, A.; Doshi, S.; Nair, R. House price prediction using machine learning and neural networks. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; 2018; pp. 1936–1939. [Google Scholar]
- Hu, L.; He, S.; Han, Z.; Xiao, H.; Su, S.; Weng, M.; Cai, Z. Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy 2019, 82, 657–673. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, F.; Peng, W.; Gao, S.; Rao, J.; Duarte, F.; Ratti, C. Understanding house price appreciation using multi-source big geo-data and machine learning. Land Use Policy 2021, 111, 104919. [Google Scholar] [CrossRef]
- Das, S.S.S.; Ali, M.E.; Li, Y.F.; Kang, Y.B.; Sellis, T. Boosting house price predictions using geo-spatial network embedding. Data Min. Knowl. Discov. 2021, 35, 2221–2250. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J. Research on Prediction of Housing Prices Based on GA-PSO-BP Neural Network Model: Evidence from Chongqing, China. Int. J. Found. Comput. Sci. 2022, 33, 805–818. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wu, S.; Du, Z. House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS Int. J.-Geo-Inf. 2022, 11, 450. [Google Scholar] [CrossRef]
- Peng, H.; Li, J.; Wang, Z.; Yang, R.; Liu, M.; Zhang, M.; Yu, P.S.; He, L. Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market. IEEE Trans. Knowl. Data Eng. 2023, 35, 2765–2780. [Google Scholar] [CrossRef]
- Wang, F.; Zou, Y.; Zhang, H.; Shi, H. House Price Prediction Approach based on Deep Learning and ARIMA Model. In Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 19–20 October 2019; pp. 303–307. [Google Scholar] [CrossRef]
- Selim, H. Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Syst. Appl. 2009, 36, 2843–2852. [Google Scholar] [CrossRef]
- Parliament, E. Directive (EU) 2019/1024 of the European Parliament and of the Council of 20 June 2019 on open data and the re-use of public sector information (recast). Off. J. Eur. Union 2019, 172, 56–83. [Google Scholar]
- Karamanou, A.; Brimos, P.; Kalampokis, E.; Tarabanis, K. Exploring the Quality of Dynamic Open Government Data Using Statistical and Machine Learning Methods. Sensors 2022, 22, 9684. [Google Scholar] [CrossRef]
- Karamanou, A.; Brimos, P.; Kalampokis, E.; Tarabanis, K. Exploring the Quality of Dynamic Open Government Data for Developing Data Intelligence Applications: The Case of Attica Traffic Data. In Proceedings of the 26th Pan-Hellenic Conference on Informatics, New York, NY, USA, 25–27 November 2022; pp. 102–109. [Google Scholar] [CrossRef]
- Brimos, P.; Karamanou, A.; Kalampokis, E.; Tarabanis, K. Graph Neural Networks and Open-Government Data to Forecast Traffic Flow. Information 2023, 14, 228. [Google Scholar] [CrossRef]
- Tseng, F.S.; Chen, C.W. Integrating heterogeneous data warehouses using XML technologies. J. Inf. Sci. 2005, 31, 209–229. [Google Scholar] [CrossRef]
- Berger, S.; Schrefl, M. From Federated Databases to a Federated Data Warehouse System. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikoloa, HI, USA, 7–10 January 2008; p. 394. [Google Scholar] [CrossRef]
- Cabibbo, L.; Torlone, R. A logical approach to multidimensional databases. In Proceedings of the International Conference on Extending Database Technology, Valencia, Spain, 23–27 March 1998; pp. 183–197. [Google Scholar]
- Datta, A.; Thomas, H. The cube data model: A conceptual model and algebra for on-line analytical processing in data warehouses. Decis. Support Syst. 1999, 27, 289–301. [Google Scholar] [CrossRef]
- Janssen, M.; Hartog, M.; Matheus, R.; Ding, A.Y.; Kuk, G. Will Algorithms Blind People? The Effect of Explainable AI and Decision-Makers’ Experience on AI-supported Decision-Making in Government. Soc. Sci. Comput. Rev. 2022, 40, 478–493. [Google Scholar] [CrossRef]
- Kalampokis, E.; Tambouris, E.; Tarabanis, K. Linked Open Cube Analytics Systems: Potential and Challenges. IEEE Intell. Syst. 2016, 31, 89–92. [Google Scholar] [CrossRef]
- Perez Martinez, J.M.; Berlanga, R.; Aramburu, M.J.; Pedersen, T.B. Integrating Data Warehouses with Web Data: A Survey. IEEE Trans. Knowl. Data Eng. 2008, 20, 940–955. [Google Scholar] [CrossRef]
- Kalampokis, E.; Karamanou, A.; Tarabanis, K. Interoperability Conflicts in Linked Open Statistical Data. Information 2019, 10, 249. [Google Scholar] [CrossRef]
- Kalampokis, E.; Zeginis, D.; Tarabanis, K. On modeling linked open statistical data. J. Web Semant. 2019, 55, 56–68. [Google Scholar] [CrossRef]
- Cyganiak, R.; Reynolds, D. The RDF data cube vocabulary: W3C recommendation. W3C Tech. Rep. 2014. Available online: https://www.w3.org/TR/vocab-data-cube/ (accessed on 30 March 2024).
- Miles, A.; Bechhofer, S. SKOS simple knowledge organization system reference. W3C Recomm. 2009. Available online: https://www.w3.org/TR/skos-reference/ (accessed on 30 March 2024).
- Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2022, 185, 40–54. [Google Scholar] [CrossRef]
- Zhang, X.M.; Liang, L.; Liu, L.; Tang, M.J. Graph neural networks and their current applications in bioinformatics. Front. Genet. 2021, 12, 690049. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chakraborty, M.; White, A.D. Predicting chemical shifts with graph neural networks. Chem. Sci. 2021, 12, 10802–10809. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Lee, H.Y.; Lee, L.S. Adversarial Training of End-to-end Speech Recognition Using a Criticizing Language Model. In Proceedings of the Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [Google Scholar] [CrossRef]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef]
- Seo, S.; Meng, C.; Liu, Y. Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020. [Google Scholar]
- Do, K.; Tran, T.; Venkatesh, S. Graph Transformation Policy Network for Chemical Reaction Prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 25 July 2019; pp. 750–760. [Google Scholar] [CrossRef]
- Qi, S.; Wang, W.; Jia, B.; Shen, J.; Zhu, S.C. Learning Human-Object Interactions by Graph Parsing Neural Networks. In Proceedings of the Computer Vision–ECCV, Munich, Germany, 8–14 September 2018; pp. 407–423. [Google Scholar]
- Marcheggiani, D.; Bastings, J.; Titov, I. Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 2, pp. 486–492. [Google Scholar] [CrossRef]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Palm, R.B.; Paquet, U.; Winther, O. Recurrent Relational Networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 3 December 2018; pp. 3372–3382. [Google Scholar]
- Salha, G.; Hennequin, R.; Tran, V.A.; Vazirgiannis, M. A Degeneracy Framework for Scalable Graph Autoencoders. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10 August 2019; pp. 3353–3359. [Google Scholar]
- Wang, T.; Liao, R.; Ba, J.; Fidler, S. NerveNet: Learning Structured Policy with Graph Neural Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April 2018. [Google Scholar]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Zhang, C.; Song, D.; Huang, C.; Swami, A.; Chawla, N.V. Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4 August 2019; pp. 793–803. [Google Scholar]
- Trivedi, R.; Farajtabar, M.; Biswal, P.; Zha, H. Dyrep: Learning representations over dynamic graphs. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Xiao, S.; Wang, S.; Dai, Y.; Guo, W. Graph neural networks in node classification: Survey and evaluation. Mach. Vis. Appl. 2022, 33, 1–19. [Google Scholar] [CrossRef]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640. [Google Scholar]
- Bianchi, F.M.; Grattarola, D.; Alippi, C. Spectral clustering with graph neural networks for graph pooling. In Proceedings of the International Conference on Machine Learning, PMLR, Vienna, Austria, 13–18 July 2020; pp. 874–883. [Google Scholar]
- Gong, L.; Cheng, Q. Exploiting edge features for graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9211–9219. [Google Scholar]
- Zhang, M.; Chen, Y. Link prediction based on graph neural networks. Adv. Neural Inf. Process. Syst. 2018, 31, 5171–5181. [Google Scholar]
- Errica, F.; Podda, M.; Bacciu, D.; Micheli, A. A fair comparison of graph neural networks for graph classification. In Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Benamira, A.; Devillers, B.; Lesot, E.; Ray, A.K.; Saadi, M.; Malliaros, F.D. Semi-supervised learning and graph neural networks for fake news detection. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 568–569. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially Regularized Graph Autoencoder for Graph Embedding. In Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 2609–2615. [Google Scholar]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef]
- Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.M.; Vandergheynst, P. Graph signal processing: Overview, challenges, and applications. Proc. IEEE 2018, 106, 808–828. [Google Scholar] [CrossRef]
- Chen, S.; Varma, R.; Sandryhaila, A.; Kovačević, J. Discrete Signal Processing on Graphs: Sampling Theory. IEEE Trans. Signal Process. 2015, 63, 6510–6523. [Google Scholar] [CrossRef]
- Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the International Conference on Learning Representations (ICLR2014), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Henaff, M.; Bruna, J.; LeCun, Y. Deep Convolutional Networks on Graph-Structured Data. arXiv 2015, arXiv:1506.05163. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 2016, 29, 3844–3852. [Google Scholar]
- Levie, R.; Monti, F.; Bresson, X.; Bronstein, M.M. CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters. IEEE Trans. Signal Process. 2019, 67, 97–109. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Zhu, F.; Huang, J. Adaptive graph convolutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Zhuang, C.; Ma, Q. Dual graph convolutional networks for graph-based semi-supervised classification. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 499–508. [Google Scholar]
- Chauhan, R.; Ghanshala, K.K.; Joshi, R. Convolutional neural network (CNN) for image detection and recognition. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 278–282. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar]
- Chen, J.; Zhu, J.; Song, L. Stochastic Training of Graph Convolutional Networks with Variance Reduction. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 941–949. [Google Scholar]
- Huang, W.; Zhang, T.; Rong, Y.; Huang, J. Adaptive sampling towards fast graph representation learning. Adv. Neural Inf. Process. Syst. 2018, 31, 4563–4572. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; Yeung, D. GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, Monterey, CA, USA, 6–10 August 2018; pp. 339–349. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
- Atwood, J.; Towsley, D. Diffusion-convolutional neural networks. Adv. Neural Inf. Process. Syst. 2016, 29, 2001–2009. [Google Scholar]
- Gao, H.; Wang, Z.; Ji, S. Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1416–1424. [Google Scholar]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 2018, 51, 1–42. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Chen, J.; Song, L.; Wainwright, M.; Jordan, M. Learning to explain: An information-theoretic perspective on model interpretation. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm Sweden, 10–15 July 2018; pp. 883–892. [Google Scholar]
- Yuan, H.; Yu, H.; Gui, S.; Ji, S. Explainability in Graph Neural Networks: A Taxonomic Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 5782–5799. [Google Scholar] [CrossRef]
- Agarwal, C.; Queen, O.; Lakkaraju, H.; Zitnik, M. Evaluating explainability for graph neural networks. Sci. Data 2023, 10, 144. [Google Scholar] [CrossRef]
- Pope, P.E.; Kolouri, S.; Rostami, M.; Martin, C.E.; Hoffmann, H. Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 10772–10781. [Google Scholar]
- Warmsley, D.; Waagen, A.; Xu, J.; Liu, Z.; Tong, H. A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 2932–2939. [Google Scholar] [CrossRef]
- Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. Gnnexplainer: Generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 9244–9255. [Google Scholar]
- Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.; Zhang, X. Parameterized explainer for graph neural network. Adv. Neural Inf. Process. Syst. 2020, 33, 19620–19631. [Google Scholar]
- Funke, T.; Khosla, M.; Anand, A. Hard Masking for Explaining Graph Neural Networks. 2021. Available online: https://openreview.net/forum?id=uDN8pRAdsoC (accessed on 30 March 2024).
- Schlichtkrull, M.S.; Cao, N.D.; Titov, I. Interpreting Graph Neural Networks for {NLP} With Differentiable Edge Masking. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Chang, Y. Graphlime: Local interpretable model explanations for graph neural networks. IEEE Trans. Knowl. Data Eng. 2022, 35, 6968–6972. [Google Scholar] [CrossRef]
- Zhang, Y.; Defazio, D.; Ramesh, A. Relex: A model-agnostic relational model explainer. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual, 19–21 May 2021; pp. 1042–1049. [Google Scholar]
- Vu, M.; Thai, M.T. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 2020, 33, 12225–12235. [Google Scholar]
- Schwarzenberg, R.; Hübner, M.; Harbecke, D.; Alt, C.; Hennig, L. Layerwise Relevance Visualization in Convolutional Text Graph Classifiers. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), Hong Kong, China, 4 November 2019; pp. 58–62. [Google Scholar] [CrossRef]
- Schnake, T.; Eberle, O.; Lederer, J.; Nakajima, S.; Schütt, K.T.; Müller, K.R.; Montavon, G. Higher-order explanations of graph neural networks via relevant walks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7581–7596. [Google Scholar] [CrossRef]
- Yuan, H.; Tang, J.; Hu, X.; Ji, S. Xgnn: Towards model-level explanations of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 430–438. [Google Scholar]
- Lv, G.; Chen, L.; Cao, C.C. On Glocal Explainability of Graph Neural Networks. In Database Systems for Advanced Applications, Proceedings of the 28th International Conference, DASFAA 2023, Tianjin, China, 17–20 April 2023; Bhattacharya, A., Lee Mong Li, J., Agrawal, D., Reddy, P.K., Mohania, M., Mondal, A., Goyal, V., Uday Kiran, R., Eds.; Springer: Cham, Switzerland, 2022; pp. 648–664. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Longa, A.; Azzolin, S.; Santin, G.; Cencetti, G.; Liò, P.; Lepri, B.; Passerini, A. Explaining the Explainers in Graph Neural Networks: A Comparative Study. arXiv 2022, arXiv:2210.15304. [Google Scholar]
- Wang, X.; Shen, H.W. GNNInterpreter: A Probabilistic Generative Model-Level Explanation for Graph Neural Networks. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Azzolin, S.; Longa, A.; Barbiero, P.; Lio, P.; Passerini, A. Global Explainability of GNNs via Logic Combination of Learned Concepts. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Kosan, M.; Huang, Z.; Medya, S.; Ranu, S.; Singh, A. Global Counterfactual Explainer for Graph Neural Networks. In Proceedings of the WSDM, Singapore, 27 February–3 March 2023. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Cramer, J.S. The Origins of Logistic Regression; Tinbergen Institute: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Karamanou, A.; Kalampokis, E.; Tarabanis, K. Integrated statistical indicators from Scottish linked open government data. Data Brief 2023, 46, 108779. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Liu, X. Spatial and Temporal Dependence in House Price Prediction. J. Real Estate Financ. Econ. 2013, 47, 341–369. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Du, H.; Jiang, D.; Kang, Y.; Li, D.; Pan, P.; Deng, Y.; Cao, D.; Hsieh, C.Y.; et al. Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking. Nat. Commun. 2023, 14, 2585. [Google Scholar] [CrossRef]
- Li, M.; Perrier, E.; Xu, C. Deep Hierarchical Graph Convolution for Election Prediction from Geospatial Census Data. Proc. AAAI Conf. Artif. Intell. 2019, 33, 647–654. [Google Scholar] [CrossRef]
Model | Accuracy | Precision | Recall | F1 | ROC-AUC | Epochs |
---|---|---|---|---|---|---|
GraphSAGE | 0.876 | 0.876 | 0.876 | 0.876 | 0.93 | 68 |
GCN | 0.852 | 0.852 | 0.852 | 0.852 | 0.91 | 112 |
ChebNET | 0.847 | 0.847 | 0.847 | 0.847 | 0.91 | 103 |
XGBoost | 0.840 | 0.850 | 0.840 | 0.840 | 0.92 | - |
MLP | 0.827 | 0.832 | 0.827 | 0.827 | 0.90 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamanou, A.; Brimos, P.; Kalampokis, E.; Tarabanis, K. Explainable Graph Neural Networks: An Application to Open Statistics Knowledge Graphs for Estimating House Prices. Technologies 2024, 12, 128. https://doi.org/10.3390/technologies12080128
Karamanou A, Brimos P, Kalampokis E, Tarabanis K. Explainable Graph Neural Networks: An Application to Open Statistics Knowledge Graphs for Estimating House Prices. Technologies. 2024; 12(8):128. https://doi.org/10.3390/technologies12080128
Chicago/Turabian StyleKaramanou, Areti, Petros Brimos, Evangelos Kalampokis, and Konstantinos Tarabanis. 2024. "Explainable Graph Neural Networks: An Application to Open Statistics Knowledge Graphs for Estimating House Prices" Technologies 12, no. 8: 128. https://doi.org/10.3390/technologies12080128
APA StyleKaramanou, A., Brimos, P., Kalampokis, E., & Tarabanis, K. (2024). Explainable Graph Neural Networks: An Application to Open Statistics Knowledge Graphs for Estimating House Prices. Technologies, 12(8), 128. https://doi.org/10.3390/technologies12080128