Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution
Abstract
:1. Introduction and Investigation Goal
2. Theoretical Framework for Scientific Investigation
3. Research Methodology
3.1. Sources of Data and Sample
- (“quantum technology”), number of publications: 3989; number of patents: 6302, from 1988 to 2022.
- (“artificial intelligence”), number of publications: 463,512; number of patents: 239,210, from 1960 to 2022.
- Combined search: (“quantum” and “artificial intelligence”), number of publications: 60; number of patents: 447, from 2004 to 2022. This combination with the Boolean operator AND represents the interaction and convergence of these two research fields and path-breaking technologies given by quantum and AI technologies. The shorter period is due to the combination of different words in the search tool, which restricts the period, compared to each technology searched individually.
3.2. Measures of Variables
- Number of articles and all scientific products using keywords or a combination of keywords with Boolean operators, as indicated above.
- Number of patents using keywords or a combination of keywords with Boolean operators, as indicated for the related period.
3.3. Study Design: Technometric Modeling and Data Analysis Procedure for Statistical Experiment
4. Results and Analysis of Findings
5. Discussion
5.1. Details of Proposed Model
5.2. Explanation of Empirical Results
5.3. Deduction from Analysis of Results
- (a)
- The significant differences in the rates of evolution between technologies, and their interaction, which generates synergic effects of accelerated evolutionary growth;
- (b)
- The evolutionary process of converging technologies, which involves a relationship of interaction between the scientific and technological information, generates a process of allometric (disproportionate) growth of patents driven by publications and consequential accelerated co-evolutionary pathways.
6. Conclusions and Prospects
6.1. Theoretical Implications
- ○
- a higher growth rate than each domain individually. This process can be due to cross-fertilization effects where each research field and technology enhances the other’s growth rate (technological symbiosis by Coccia’s theory).
- ○
- the learning processes of converging technologies, associated with the interaction processes, are a driving force of a rapid scientific and technological evolution and progress.
6.2. Managerial and Policy Implications
6.3. Limitations and Ideas for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthur, B.W. The Nature of Technology: What It Is and How It Evolves; Free Press, Simon & Schuster: London, UK, 2009. [Google Scholar]
- Coccia, M. General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development. Technol. Soc. 2015, 42, 199–226. [Google Scholar] [CrossRef]
- Coccia, M. Measuring intensity of technological change: The seismic approach. Technol. Forecast. Soc. Chang. 2005, 72, 117–144. [Google Scholar] [CrossRef]
- Coccia, M. New directions of technologies pointing the way to a sustainable global society. Sustain. Futur. 2023, 5, 100114. [Google Scholar] [CrossRef]
- Coccia, M. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technol. Anal. Strat. Manag. 2016, 29, 1048–1061. [Google Scholar] [CrossRef]
- Coccia, M. Technological Innovation. In The Blackwell Encyclopedia of Sociology; Ritzer, G., Rojek, C., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Coccia, M. What Is Technology and Technology Change? A New Conception with Systemic-Purposeful Perspective for Technology Analysis. J. Soc. Adm. Sci. 2019, 6, 145–169. [Google Scholar]
- Coccia, M.; Bontempi, E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environ. Res. 2023, 229, 115938. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. How does science advance? Theories of the evolution of science. J. Econ. Soc. Thought 2020, 7, 153–180. [Google Scholar]
- Coccia, M. Why do nations produce science advances and new technology? Technol. Soc. 2019, 59, 1–9. [Google Scholar]
- Coccia, M. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. Technol. Forecast. Soc. Chang. 2017, 116, 331–339. [Google Scholar] [CrossRef]
- Coccia, M. Foresight of technological determinants and primary energy resources of future economic long waves. Int. J. Foresight Innov. Policy 2010, 6, 225–232. [Google Scholar] [CrossRef]
- Coccia, M. Democratization is the driving force for technological and economic change. Technol. Forecast. Soc. Chang. 2010, 77, 248–264. [Google Scholar] [CrossRef]
- Coccia, M. Spatial patterns of technology transfer and measurement of its friction in the geo-economic space. Int. J. Technol. Transf. Commer. 2010, 9, 255. [Google Scholar] [CrossRef]
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Lakatos, I.; Worrall, J.; Currie, G. (Eds.) The Methodology of Scientific Research Programmes; Philosophical Papers; Cambridge University Press: Cambridge, UK, 1980; Volume 1. [Google Scholar]
- Price, D. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1986. [Google Scholar]
- Scharnhorst, A.; Borner, K.; Besselaar, P. Models of Science Dynamics: Encounters between Complexity Theory and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Coccia, M. Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine. Int. J. Heal. Technol. Manag. 2012, 13, 184. [Google Scholar] [CrossRef]
- Coccia, M. Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: The effects on strategic management of the R&D corporate change. Technol. Anal. Strat. Manag. 2013, 26, 733–749. [Google Scholar] [CrossRef]
- Coccia, M.; Wang, L. Evolution and convergence of the patterns of international scientific collaboration. Proc. Natl. Acad. Sci. USA 2016, 113, 2057–2061. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.; Wang, L. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy. Technol. Forecast. Soc. Chang. 2015, 94, 155–169. [Google Scholar] [CrossRef]
- Coccia, M. Dynamics of Converging Scientific and Technological Development in Artificial Intelligence and Quantum Technologies. Preprints 2024, 2024020325. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry. IEEE Trans. Eng. Manag. 2024, 71, 2270–2280. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. Evolutionary Phases in Emerging Technologies: Theoretical and Managerial Implications from Quantum Technologies. IEEE Trans. Eng. Manag. 2024, 1–16. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. General laws of funding for scientific citations: How citations change in funded and unfunded research between basic and applied sciences. J. Data Inf. Sci. 2024, 9, 1–18. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. Research funding and citations in papers of Nobel Laureates in Physics, Chemistry and Medicine, 2019–2020. J. Data Inf. Sci. 2024, 9, 1–25. [Google Scholar] [CrossRef]
- Sun, X.; Kaur, J.; Milojević, S.; Flammini, A.; Menczer, F. Social Dynamics of Science. Sci. Rep. 2013, 3, 1069. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Fishbone diagram for technological analysis and foresight. Int. J. Foresight Innov. Policy 2020, 14, 225. [Google Scholar] [CrossRef]
- Coccia, M. The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies. J. Soc. Adm. Sci. 2017, 4, 291–303. [Google Scholar]
- Coccia, M. A theory of classification and evolution of technologies within a Generalised Darwinism. Technol. Anal. Strat. Manag. 2018, 31, 517–531. [Google Scholar] [CrossRef]
- Coccia, M. Classification of innovation considering technological interaction. J. Econ. Bibliogr. 2018, 5, 76–93. [Google Scholar]
- Coccia, M. Radical innovations as drivers of breakthroughs: Characteristics and properties of the management of technology leading to superior organisational performance in the discovery process of R&D labs. Technol. Anal. Strat. Manag. 2015, 28, 381–395. [Google Scholar] [CrossRef]
- Roshani, S.; Coccia, M.; Mosleh, M. Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech Innov. J. 2022, 3, 356–375. [Google Scholar] [CrossRef]
- Coccia, M. General properties of the evolution of research fields: A scientometric study of human microbiome, evolutionary robotics and astrobiology. Scientometrics 2018, 117, 1265–1283. [Google Scholar] [CrossRef]
- Coccia, M. The evolution of scientific disciplines in applied sciences: Dynamics and empirical properties of experimental physics. Scientometrics 2020, 124, 451–487. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Sensor Research for Clarifying the Dynamics and Properties of Future Directions. Sensors 2022, 22, 9419. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.; Roshani, S.; Mosleh, M. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors 2021, 21, 7803. [Google Scholar] [CrossRef] [PubMed]
- Mulkay, M.J. Three Models of Scientific Development. Sociol. Rev. 1975, 23, 509–526. [Google Scholar] [CrossRef]
- Roco, M.; Bainbridge, W. Converging Technologies for Improving Human Performance: Integrating from the Nanoscale. J. Nanoparticle Res. 2002, 4, 281–295. [Google Scholar] [CrossRef]
- Noyons, E.C.M.; van Raan, A.F.J. Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. J. Am. Soc. Inf. Sci. 1998, 49, 68–81. [Google Scholar]
- van Raan, A.F.J. Fractal dimension of co-citations. Nature 1990, 347, 626. [Google Scholar] [CrossRef]
- Crane, D. Invisible Colleges: Diffusion of Knowledge in Scientific Communities; University of Chicago Press: Chicago, IL, USA, 1972. [Google Scholar]
- Wagner, C. The New Invisible College: Science for Development; Brookings Institution Press: Washington, DC, USA, 2008. [Google Scholar]
- Coccia, M. Technological Parasitism. J. Econ. Soc. Thought 2019, 6, 173–209. [Google Scholar]
- Coccia, M. Technological Parasitism; ©KSP Books: Istanbul, Turkey, 2019; ISBN 978-605-7602-90-9. [Google Scholar]
- Coccia, M. The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting. Technol. Forecast. Soc. Chang. 2019, 141, 289–304. [Google Scholar] [CrossRef]
- Coccia, M.; Watts, J. A theory of the evolution of technology: Technological parasitism and the implications for innovation magement. J. Eng. Technol. Manag. 2019, 55, 101552. [Google Scholar] [CrossRef]
- Coccia, M. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technol. Soc. 2019, 60, 101198. [Google Scholar] [CrossRef]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Burger, B.; Kanbach, D.K.; Kraus, S.; Breier, M.; Corvello, V. On the use of AI-based tools like ChatGPT to support management research. Eur. J. Innov. Manag. 2023, 26, 233–241. [Google Scholar] [CrossRef]
- Cushing, A.L.; Osti, G. “So how do we balance all of these needs?”: How the concept of AI technology impacts digital archival expertise. J. Doc. 2022, 79, 12–29. [Google Scholar] [CrossRef]
- Dhamija, P.; Bag, S. Role of artificial intelligence in operations environment: A review and bibliometric analysis. TQM J. 2020, 32, 869–896. [Google Scholar] [CrossRef]
- Thew, R.; Jennewein, T.; Sasaki, M. Focus on quantum science and technology initiatives around the world. Quantum Sci. Technol. 2019, 5, 010201. [Google Scholar] [CrossRef]
- Cozzens, S.; Gatchair, S.; Kang, J.; Kim, K.-S.; Lee, H.J.; Ordóñez, G.; Porter, A. Emerging technologies: Quantitative identification and measurement. Technol. Anal. Strateg. Manag. 2010, 22, 361–376. [Google Scholar] [CrossRef]
- Scheidsteger, T.; Haunschild, R.; Bornmann, L.; Ettl, C. Bibliometric Analysis in the Field of Quantum Technology. Quantum Rep. 2021, 3, 549–575. [Google Scholar] [CrossRef]
- Coccia, M. Disruptive firms and industrial change, J. Econ. Soc. Thought 2017, 4, 437–450. [Google Scholar]
- Coccia, M. Asymmetry of the technological cycle of disruptive innovations. Technol. Anal. Strat. Manag. 2020, 32, 1462–1477. [Google Scholar]
- Coccia, M. Disruptive innovations in quantum technologies for social change. J. Econ. Bibliogr. 2022, 9, 21–39. [Google Scholar]
- Coccia, M. Sources of disruptive technologies for industrial change. L’industria–Riv. Econ. Politica Ind. 2017, 38, 97–120. [Google Scholar] [CrossRef]
- Coccia, M. Destructive Technologies for Industrial and Corporate Change. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Coccia, M. Disruptive firms and technological change. Quad. IRCrES-CNR 2018, 3, 3–18. [Google Scholar] [CrossRef]
- Adner, R. When are technologies disruptive: A demand-based view of the emergence of competition. Strateg. Manag. J. 2002, 23, 667. [Google Scholar] [CrossRef]
- Calvano, E. Destructive Creation; SSE/EFI Working Paper Series in Economics and Finance; Stockholm School of Economics: Stockholm, Sweden, 2007. [Google Scholar]
- Christensen, C. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail; Harvard Business School Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Christensen, C.; Raynor, M.; McDonald, R. What is disruptive innovation? Harv. Bus. Rev. 2015, 44–53. [Google Scholar]
- Coccia, M. Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- SAS. Artificial Intelligence, What It Is and Why It Matters. 2024. Available online: https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html (accessed on 14 April 2024).
- Aboy, M.; Minssen, T.; Kop, M. Mapping the Patent Landscape of Quantum Technologies: Patenting Trends, Innovation and Policy Implications. IIC Int. Rev. Intellect. Prop. Compet. Law 2022, 53, 853–882. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Chen, S.-L. Exploring landscapes of quantum technology with Patent Network Analysis. Technol. Anal. Strat. Manag. 2021, 33, 1317–1331. [Google Scholar] [CrossRef]
- McKinsey. Quantum Technology Monitor; McKinsey & Company: Chicago, IL, USA, 2023. [Google Scholar]
- Dong, S.; Chen, H. Artificial intelligence and IoT based optical quantum computing application legal implications in privacy and regulatory analysis. Opt. Quantum Electron. 2024, 56, 556. [Google Scholar] [CrossRef]
- Zhou, T.; Anuradha, T.; Mahendra, S.J.; Webber, J.L.; Mehbodniya, A.; Wang, J.; Subrahmanyam, K. Efficient and economical smart healthcare application based on quantum optical neural network. Opt. Quantum Electron. 2024, 56, 445. [Google Scholar] [CrossRef]
- Liu, J.; Ren, T. Economic impact of quantum sports technologies on healthcare artificial intelligence based study. Opt. Quantum Electron. 2023, 56, 168. [Google Scholar] [CrossRef]
- Coccia, M. Theories of the evolution of technology based on processes of competitive substitution and multi-mode interaction between technologies. J. Econ. Bibliogr. 2019, 6, 99–109. [Google Scholar]
- Coccia, M. The interaction between public and private R&D expenditure and national productivity. Prometh.-Crit. Stud. Innov. 2011, 29, 121–130. [Google Scholar] [CrossRef]
- Coccia, M. What is the optimal rate of R&D investment to maximize productivity growth? Technol. Forecast. Soc. Chang. 2009, 76, 433–446. [Google Scholar] [CrossRef]
- Magee, C.; Basnet, S.; Funk, J.; Benson, C. Quantitative empirical trends in technical performance. Technol. Forecast. Soc. Chang. 2016, 104, 237–246. [Google Scholar] [CrossRef]
- Vespignani, A. Predicting the Behavior of Techno-Social Systems. Science 2009, 325, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Sahal, D. Patterns of Technological Innovation; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1981. [Google Scholar]
- Ardito, L.; Coccia, M.; Messeni Petruzzelli, A. Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Manag. 2021, 51, 381–392. [Google Scholar] [CrossRef]
- Jovanovic, M.; Sjödin, D.; Parida, V. Co-evolution of platform architecture, platform services, and platform governance: Expanding the platform value of industrial digital platforms. Technovation 2022, 118, 102218. [Google Scholar] [CrossRef]
- Liang, Z.; Mao, J.; Lu, K.; Ba, Z.; Li, G. Combining deep neural network and bibliometric indicator for emerging research topic prediction. Inf. Process. Manag. 2021, 58, 102611. [Google Scholar] [CrossRef]
- Faust, K. Early identification of technological advances on the basis of patent data. Scientometrics 1990, 19, 473–480. [Google Scholar] [CrossRef]
- Scopus. Advanced Search. 2023. Available online: https://www.scopus.com/search/form.uri?display=advanced (accessed on 11 November 2023).
- Glänzel, W.; Thijs, B. Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics 2011, 91, 399–416. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M. Patents, Citations, and Innovations: A Window on the Knowledge Economy; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Utterback, J.M.; Pistorius, C.; Yilmaz, E. The Dynamics of Competition and of the Diffusion of Innovations; MIT Sloan School Working Paper 5519-18; MIT: Cambridge, MA, USA, 2019. [Google Scholar]
- Krinkin, K.; Shichkina, Y.; Ignatyev, A. Co-evolutionary hybrid intelligence is a key concept for the world intellectualization. Kybernetes 2022, 52, 2907–2923. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Xi, X.; Gong, C. A quantum mechanics-based framework for knowledge-based innovation. J. Knowl. Manag. 2021, 26, 642–680. [Google Scholar] [CrossRef]
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [PubMed]
- Roshani, S.; Bagherylooieh, M.-R.; Mosleh, M.; Coccia, M. What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics 2021, 126, 7859–7874. [Google Scholar] [CrossRef]
- Mosleh, M.; Roshani, S.; Coccia, M. Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 2022, 127, 1931–1951. [Google Scholar] [CrossRef]
- Coccia, M. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations. J. Technol. Transf. 2017, 43, 792–814. [Google Scholar] [CrossRef]
- Coccia, M. Competition between basic and applied research in the organizational behaviour of public research labs. J. Econ. Lib. 2018, 5, 118–133. [Google Scholar]
- Leydesdorff, L. Caveats for the use of citation indicators in research and journal evaluations. J. Am. Soc. Inf. Sci. Technol. 2007, 59, 278–287. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Rafols, I. Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. J. Inf. 2011, 5, 87–100. [Google Scholar] [CrossRef]
- Silva, F.N.; Rodrigues, F.A.; Oliveira, O.N., Jr.; da Fontoura Costa, L. Quantifying the interdisciplinarity of scientific journals and fields. J. Informetr. 2013, 7, 469–477. [Google Scholar] [CrossRef]
- Coccia, M. Comparative Institutional Changes. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Coccia, M. New organisational behaviour of public research institutions: Lessons learned from Italian case study. Int. J. Bus. Innov. Res. 2008, 2, 402. [Google Scholar] [CrossRef]
- Coccia, M. The Foundation of the General Theory of Scientific Variability for Technological Evolution. Preprints 2024, 104746. [Google Scholar] [CrossRef]
- Coccia, M. Law of variability in science driving technological evolution. Preprints 2023, 2023120187. [Google Scholar] [CrossRef]
- Coccia, M. Variability in Research Topics Driving Different Technological Trajectories. Preprints 2024, 2024020603. [Google Scholar] [CrossRef]
- Coccia, M. Probability of discoveries between research fields to explain scientific and technological change. Technol. Soc. 2022, 68, 101874. [Google Scholar] [CrossRef]
- Coccia, M. Theorem of not independence of any technological innovation. J. Econ. Bib. 2018, 5, 29–35. [Google Scholar]
- Coccia, M. New Perspectives in Innovation Failure Analysis: A taxonomy of general errors and strategic management for reducing risks. Technol. Soc. 2023, 75, 102384. [Google Scholar]
- Coccia, M. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia. Technovation 2012, 32, 370–379. [Google Scholar] [CrossRef]
- Coccia, M. Evolutionary trajectories of the nanotechnology research across worldwide economic players. Technol. Anal. Strateg. Manag. 2012, 24, 1029–1050. [Google Scholar] [CrossRef]
- Coccia, M. Promising technologies for fostering simultaneous environmental and socioeconomic sustainability. J. Econ. Soc. Thoug. 2023, 10, 28–47. [Google Scholar]
- Coccia, M. New Directions in Quantum Technologies. J. Econ. Bib. 2022, 9, 21–39. [Google Scholar] [CrossRef]
- Coccia, M. Bolstering effect in the interaction between artificial intelligence and quantum science for scientific and technological development. Advance 2024, preprints. [Google Scholar] [CrossRef]
- Coccia, M.; Ghazinoori, S.; Roshani, S. Evolutionary Pathways of Ecosystem Literature in Organization and Management Studies. Res. Sq. 2023. [Google Scholar] [CrossRef]
Dependent Variable: Scientific Products | ||||
---|---|---|---|---|
Coefficient b | Constant a | F | R2 | |
Quantum technology, Log y pubs | 0.206 *** | −410.73 *** | 370.47 *** | 0.93 |
Artificial intelligence technology, Log y pubs | 0.155 *** | −301.58 *** | 720.43 *** | 0.92 |
Artificial intelligence and quantum technology, Log y pubs | 0.172 ** | −345.00 ** | 14.89 ** | 0.61 |
Dependent Variable: Patents | ||||
---|---|---|---|---|
Coefficient b’ | Constant a’ | F | R2 | |
Quantum technology, Log y Patents i,t | 0.217 *** | −432.61 *** | 516.72 *** | 0.94 |
Artificial intelligence technology, Log y Patents i,t | 0.199 *** | −391.87 *** | 514.97 *** | 0.91 |
Artificial intelligence and quantum technology, Log y Patents i,t | 0.416 ** | −835.95 ** | 29.60 ** | 0.72 |
Estimated Relationship | |||
---|---|---|---|
Model of Equation (2) | log Y | log A | +B log Y |
Quantum technology | log Y= | 0.257 | +1.067 log X |
(0.244) | (0.06) | ||
N S | p < 0.001 | ||
R2 = 0.914 | S = 0.683 | F = 288.249 *** | |
Artificial intelligence technology | log Y′= | −5.016 | +1.375 log X′ |
(0.477) | (0.060) | ||
p < 0.001 | p < 0.001 | ||
R2 = 0.910 | S = 1.015 | F = 529.843 *** | |
Quantum technology and artificial intelligence | log Y″= | 0.407 | +1.583 log X″ |
(0.412) | (0.225) | ||
N S | p < 0.001 | ||
R2 = 0.874 | S = 0.664 | F = 49.64 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coccia, M. Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution. Technologies 2024, 12, 66. https://doi.org/10.3390/technologies12050066
Coccia M. Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution. Technologies. 2024; 12(5):66. https://doi.org/10.3390/technologies12050066
Chicago/Turabian StyleCoccia, Mario. 2024. "Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution" Technologies 12, no. 5: 66. https://doi.org/10.3390/technologies12050066
APA StyleCoccia, M. (2024). Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution. Technologies, 12(5), 66. https://doi.org/10.3390/technologies12050066