Past, Present, and Future of New Applications in Utilization of Eddy Currents
Abstract
:1. Introduction
2. Theory of Eddy Currents
3. Non-Destructive Evaluation
4. Maglev Applications
5. Inductive Braking Systems
6. Medical Applications
7. Electromagnetic Launching
8. Overview and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foucault, L. Recueil Des Travaux Scientifiques de Léon Foucault; Bibliothèques de l’Université de Strasbourg, Ed.; Gauthier-Villars: Paris, France, 1878. [Google Scholar]
- Olivares, J.C.; Cañedo, J.; Moreno, P.; Driesen, J.; Escarela, R.; Palanivasagam, S. Experimental Study to Reduce the Distribution-Transformers Stray Losses Using Electromagnetic Shields. Electr. Power Syst. Res. 2002, 63, 1–7. [Google Scholar] [CrossRef]
- Olivares-Galvan, J.C.; Georgilakis, P.S.; Campero-Littlewood, E.; Escarela-Perez, R. Core Lamination Selection for Distribution Transformers Based on Sensitivity Analysis. Electr. Eng. 2013, 95, 33–42. [Google Scholar] [CrossRef]
- Olivares-Galván, J.C.; Georgilakis, P.S.; Ocon-Valdez, R. A Review of Transformer Losses. Electr. Power Compon. Syst. 2009, 37, 1046–1062. [Google Scholar] [CrossRef]
- Mishra, A.; Bag, S.; Pal, S. Induction Heating in Sustainable Manufacturing and Material Processing Technologies—A State of the Art Literature Review. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–357. [Google Scholar]
- Lucia, Q.; Sarnago, H.; Acero, J.; Carretero, C.; Burdio, J.M. Induction Heating Cookers: A Path Towards Decarbonization Using Energy Saving Cookers. In Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, 15–19 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1435–1439. [Google Scholar]
- Dietrich, A.; Nacke, B. Numerical Investigation of Effects on Blanks for Press Hardening Process during Longitudinal Flux Heating. IOP Conf. Ser. Mater. Sci. Eng. 2018, 355, 012014. [Google Scholar] [CrossRef]
- Fedin, M.A.; Kuvaldin, A.B.; Lepeshkin, A.R.; Kondrashov, S.S.; Fedina, S.A.; Zhmurko, I.E. An Integrated Approach to the Mathematical Description of Induction Heating Installations Using Information Technologies. In Proceedings of the 2022 VI International Conference on Information Technologies in Engineering Education (Inforino), Moscow, Russia, 12–15 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Desisa, D. Numerical Modeling of Induction Heating Process Control. In Proceedings of the 2022 22nd International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 8–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Chacon-Troya, D.P.; Quezada, J.; Espinoza, C. Development and Implementation of a Smart Induction Stove. In Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Upda, S.; Upda, L. Eddy Currente Testing—Are We at the Limit? In Proceedings of the 16th World Conference on NDT, Montreal, QC, Canada, 30 August–3 September 2004. [Google Scholar]
- Peng, X.; Jun, H. A New Eddy Current Sensor Composed of Three Circumferential Gradient Winding Coils. In Proceedings of the 2013 Seventh International Conference on Sensing Technology (ICST), Wellington, New Zealand, 3–5 December 2013; pp. 912–915. [Google Scholar] [CrossRef]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-Destructive Techniques Based on Eddy Current Testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, J.; Gomez-Gil, J. Comparative Evaluation of Coil and Hall Probes in Hole Detection and Thickness Measurement on Aluminum Plates Using Eddy Current Testing. Russ. J. Nondestruct. Test. 2013, 49, 482–491. [Google Scholar] [CrossRef]
- Yashan, A.; Becker, R. Dobmann Gerd Use of GMR-Sensors for Eddy-Current Testing. In Proceedings of the International Workshop on Electromagnetic Nondestructive Evaluation, Budapest, Hungary, 28–30 June 2000; pp. 187–193. [Google Scholar]
- Tawfik, N.G.; Hussein, Y.; Azab, E. Analysis of Magnetoresistive Sensors for Nondestructive Evaluation. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Republic of Korea, 12–14 March 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Camaño-Valenzuela, J. Finite Element Methods for Problems in Bioelectromagnetism. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2013. (In Spanish). [Google Scholar]
- Wang, C.; Zhang, J.; Li, F.; Cui, Z.; Xu, C. Design of a Non-Magnetic Shielded and Integrated Electromagnetic Tomography System. Meas. Sci. Technol. 2011, 22, 104007. [Google Scholar] [CrossRef]
- Ahsan-Ul-Ambia; Toda, S.; Takemae, T.; Kosugi, Y.; Hongo, M. Electric Impedance Tomography Using Tetrapolar Circuit Method with Eddy Current. In Proceedings of the SICE Annual Conference 2007, Takamatsu, Japan, 17–20 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1921–1924. [Google Scholar]
- Stubbe, L.; Le Bihan, Y.; Ozout, A.-E.; Herivan, G.; Berthelot, E. An Eddy Current System for the Study of the Cranial Rhythmic Impulse. IEEE Trans. Magn. 2015, 51, 5100203. [Google Scholar] [CrossRef]
- Ramirez-Galindo, A.D.; Olivares-Galván, J.C.; Corona-Sánchez, M.A.; Escarela-Pérez, R.; Melgoza-Vazquez, M.; Gonzalez-Montañez, F.J. Efficient coil design for transcranial magnetic stimulation using computational tools. Ingeniería Investigación y Tec. 2024, 25, 1–12. [Google Scholar]
- Oleson, J.R. A Review of Magnetic Induction Methods for Hyperthermia Treatment of Cancer. IEEE Trans. Biomed. Eng. 1984, BME-31, 91–97. [Google Scholar] [CrossRef]
- Wang, I.-Y.A.; Busch-Vishniac, I. A New Repulsive Magnetic Levitation Approach Using Permanent Magnets and Air-Core Electromagnets. IEEE Trans. Magn. 1994, 30, 1422–1432. [Google Scholar] [CrossRef]
- Leung, E.; Dew, M.; Samavedam, G.; Gamble, B. A Study of Two Distinct Coil Designs for a Maglev EDS Application. IEEE Trans. Magn. 1994, 30, 2379–2382. [Google Scholar] [CrossRef]
- Davey, K.R. Electrodynamic Maglev Coil Design and Analysis. IEEE Trans. Magn. 1997, 33, 4227–4229. [Google Scholar] [CrossRef]
- Sakamoto, T.; Eastham, A.R.; Dawson, G.E. Induced Currents and Forces for the Split-Guideway Electrodynamic Levitation System. IEEE Trans. Magn. 1991, 27, 5004–5006. [Google Scholar] [CrossRef]
- Cho, S.; Liu, H.C.; Ahn, H.; Lee, J.; Lee, H.W. Eddy Current Brake with a Two-Layer Structure: Calculation and Characterization of Braking Performance. IEEE Trans. Magn. 2017, 53, 8110205. [Google Scholar] [CrossRef]
- Singh, A.K.; Ibraheem; Sharma, A.K. Parameter Identification of Eddy Current Braking System for Various Applications. In Proceedings of the 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), Ghaziabad, India, 28–29 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 191–195. [Google Scholar]
- Li, H.; Yang, M.; Hao, W. Research of Novel Eddy-Current Brake System for Moving-Magnet Type Linear Electromagnetic Launchers. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–3. [Google Scholar]
- Shin, K.H.; Park, H.I.; Cho, H.W.; Choi, J.Y. Semi-Three-Dimensional Analytical Torque Calculation and Experimental Testing of an Eddy Current Brake with Permanent Magnets. IEEE Trans. Appl. Supercond. 2018, 28, 5203205. [Google Scholar] [CrossRef]
- Putra, M.R.A.; Nizam, M.; Tjahjana, D.D.D.P.; Arfandi, M.; Choirunisa, I. Design Study in Single Disk Axial Eddy Current Brake. In Proceedings of the 2018 5th International Conference on Electric Vehicular Technology (ICEVT), Surakarta, Indonesia, 30–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 158–160. [Google Scholar]
- Fan, G.; Wang, Z.; Wei, Z.; Liu, Y.; Fan, R. Negative Dielectric Permittivity and High-Frequency Diamagnetic Responses of Percolated Nickel/Rutile Cermets. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106132. [Google Scholar] [CrossRef]
- Wolter, B.; Straß, B.; Jacob, K.; Rauhut, M.; Stephani, T.; Riemer, M.; Friedemann, M. Nondestructive Material Characterization and Component Identification in Sheet Metal Processing with Electromagnetic Methods. Sci. Rep. 2024, 14I, 6274. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Song, X.; Zhang, X.; Wang, Q.; Tang, Y.; Liu, Y. Biomass-Derived Ferrous Magnetic Carbon-Based Nanocomposites from Loofah Collaterals for Excellent Electromagnetic Wave-Absorbing Materials. J. Alloys Compd. 2023, 969, 172384. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Ma, R.; Fan, R. Nickel/Yttrium Iron Garnet Metacomposites with Adjustable Negative Permittivity Behavior toward Electromagnetic Shielding Application. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106842. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, Z.; Xie, P.; Wang, Z.; Fan, R. Ultraweakly and Fine-Tunable Negative Permittivity of Polyaniline/Nickel Metacomposites with High-Frequency Diamagnetic Response. Compos. Sci. Technol. 2022, 217, 109092. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, K.C.; Lee, J. Review of Maglev Train Technologies. IEEE Trans. Magn. 2006, 42, 1917–1925. [Google Scholar]
- Hamia, R.; Cordier, C.; Dolabdjian, C. Eddy-Current Non-Destructive Testing System for the Determination of Crack Orientation. NDT E Int. 2014, 61, 24–28. [Google Scholar] [CrossRef]
- Kriezis, E.E.; Tsiboukis, T.D.; Panas, S.M.; Tegopoulos, J.A. Eddy Currents: Theory and Applications. Proc. IEEE 1992, 80, 1559–1589. [Google Scholar] [CrossRef]
- Ersoz, A.B.; Pekcan, O.; Teke, T. Crack Identification for Rigid Pavements Using Unmanned Aerial Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 236, 012101. [Google Scholar] [CrossRef]
- Theodoulidis, T. Analytical Model for Tilted Coils in Eddy-Current Nondestructive Inspection. IEEE Trans. Magn. 2005, 41, 2447–2454. [Google Scholar] [CrossRef]
- Theodoulidis, T.P. Model of Ferrite-Cored Probes for Eddy Current Nondestructive Evaluation. J. Appl. Phys. 2003, 93, 3071–3078. [Google Scholar] [CrossRef]
- Faraj, M.A.; Samsuri, F.; AbdAlla, A.N.; Rifai, D.; Ali, K.; Al-Douri, Y. Hybrid GMR/IR Probe to Reduce the Effects of Lift-Off. Meas. Control. 2019, 52, 588–598. [Google Scholar] [CrossRef]
- Gao, R.; Wang, H.; Wang, C.; Feng, S.; Zhu, B. Characterization Methods of Subsurface Cracks in Grinding of Optical Elements. IOP Conf. Ser. Mater. Sci. Eng. 2017, 250, 012025. [Google Scholar] [CrossRef]
- Alatawneh, N.; Underhill, P.R.; Krause, T.W. Low Frequency Eddy Current Testing for Detection of Sub-Surface Cracks in CF-188 Stub Flange. IEEE Sens. J. 2017, 18, 1568–1575. [Google Scholar] [CrossRef]
- Postolache, O.; Ribeiro, A.L.; Ramos, H. A Novel Uniform Eddy Current Probe with GMR for Non Destructive Testing Applications. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Gao, P.; Wang, X.; Han, D.; Zhang, Q. Eddy Current Testing for Weld Defects with Different Directions of Excitation Field of Rectangular Coil. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; pp. 486–491. [Google Scholar]
- Espina-Hernández, J.H.; Ramírez-Pacheco, E.; Caleyo, F.; Pérez-Benitez, J.A.; Hallen, J.M. Rapid Estimation of Artificial Near-Side Crack Dimensions in Aluminium Using a GMR-Based Eddy Current Sensor. NDT E Int. 2012, 51, 94–100. [Google Scholar] [CrossRef]
- Ramírez-Pacheco, E.; Espina-Hernández, J.H.; Caleyo, F.; Hallen, J.M. Defect Detection in Aluminium with an Eddy Currents Sensor. In Proceedings of the 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2010, Cuernavaca, Mexico, 28 September–1 October 2010; pp. 765–770. [Google Scholar] [CrossRef]
- Ramírez, E.; Espina, J.H.; Pérez, J.A.; Caleyo, F.; Hallen, J.M. Some Particularities of EC Crack Detection in Aluminum Using an Asymmetrical GMR-Coil Configuration. IEEE Lat. Am. Trans. 2015, 13, 1331–1339. [Google Scholar] [CrossRef]
- Xia, Z.; Huang, R.; Shao, Y.; Bai, X.; Yin, W. Estimation of Defect Depth on Plates by Eddy-Current Coil Array. Sens. Actuators A Phys. 2024, 369, 115114. [Google Scholar] [CrossRef]
- Wang, N.; Li, P.; Li, T.; Wang, Y.; He, C.; Liu, X. Quantitative Characterization of Tensile Stress in Electroplated Nickel Coatings with a Magnetic Incremental Permeability Sensor. Sens. Actuators A Phys. 2024, 368, 115082. [Google Scholar] [CrossRef]
- Wertz, J.; Homa, L.; Cherry, M.; O’Rourke, S.; Flournoy, C.; Blasch, E. A Novel Method for Segmentation of Titanium Microtexture Regions via Sensor Data Fusion. Mater. Charact. 2024, 210, 113770. [Google Scholar] [CrossRef]
- Matsunaga, W.; Mizutani, Y. Evaluation Method for Electromagnetic Induction Testing of Dielectrics Using Impedance Plane Diagrams Drawn Using Ampère-Maxwell Equation and Simple Electrical Circuit Model. J. Nondestr. Eval. 2024, 43, 30. [Google Scholar] [CrossRef]
- Postolache, O.; Ribeiro, A.L.; Ramos, H.G. Uniform Eddy Current Probe Based on GMR Sensor Array and Image Processing for NDT. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 458–463. [Google Scholar] [CrossRef]
- Pasadas, D.; Ribeiro, A.L.; Ramos, H.G.; Rocha, T. 2D Geometry Characterization of Cracks from ECT Image Analysis Using Planar Coils and GMR-Sensors. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016. [Google Scholar] [CrossRef]
- Wrzuszczak, M.; Wrzuszczak, J. Eddy Current Flaw Detection with Neural Network Applications. Measurement 2002, 38, 161–164. [Google Scholar] [CrossRef]
- Peng, X. Eddy Current Crack Extension Direction Evaluation Based on Neural Network. In Proceedings of the SENSORS, 2012 IEEE, Taipei, Taiwan, 28–31 October 2012; pp. 3–6. [Google Scholar]
- Rosado, L.; Ramos, P.M.; Janeiro, F.M.; Piedade, M. Eddy Currents Testing Defect Characterization Based on Non-Linear Regressions and Artificial Neural Networks. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 2419–2424. [Google Scholar] [CrossRef]
- Rosado, L.S.; Janeiro, F.M.; Ramos, P.M.; Piedade, M. Defect Characterization with Eddy Current Testing Using Nonlinear-Regression Feature Extraction and Artificial Neural Networks. IEEE Trans. Instrum. Meas. 2013, 62, 1207–1214. [Google Scholar] [CrossRef]
- Bernieri, A.; Ferrigno, L.; Laracca, M.; Molinara, M. Crack Shape Reconstruction in Eddy Current Testing Using Machine Learning Systems for Regression. IEEE Trans. Instrum. Meas. 2008, 57, 1958–1968. [Google Scholar] [CrossRef]
- Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M.R. Eddy Current Characterization of Small Cracks Using Least Square Support Vector Machine. J. Phys. D Appl. Phys. 2016, 49, 155303. [Google Scholar] [CrossRef]
- Romero-Arismendi, N.O.; Pacheco, E.R.; Lopez, O.P.; Espina-Hernandez, J.H.; Benitez, J.A.P. Classification of Artificial Near-Side Cracks in Aluminium Plates Using a GMR-Based Eddy Current Probe. In Proceedings of the 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, 21–23 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 31–36. [Google Scholar]
- Sun, W.; Kasa, T.; Hatsukade, Y.; Sugiuchi, T.; Nishida, H. Development of an HTS-SQUID Based Nondestructive Evaluation System for Boiler Tubes On-Site Inspection in Thermal Power Plant. IEEE Trans. Appl. Supercond. 2023, 33, 1600605. [Google Scholar] [CrossRef]
- Santos, D.; Machado, M.A.; Monteiro, J.; Sousa, J.P.; Proença, C.S.; Crivellaro, F.S.; Rosado, L.S.; Santos, T.G. Non-Destructive Inspection of High Temperature Piping Combining Ultrasound and Eddy Current Testing. Sensors 2023, 23, 3348. [Google Scholar] [CrossRef]
- Wang, S.; Gan, F.; Gou, H.; Du, Y. An Online Monitoring Method for High Temperature Environments Combining Eddy Current Testing and Electromagnetic Acoustic Transducer Techniques. IEEE Sens. J. 2024, 24, 8682–8693. [Google Scholar] [CrossRef]
- Carey, R. Permanent Magnets in Theory and Practice. Phys. Bull. 1978, 29, 575. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, P.; Li, J.; Chi, Z.; Wang, L. Modeling and Control of Maglev Train Considering Eddy Current Effect. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; IEEE: Piscataway, NJ, USA, 2020; Volume 2020, pp. 5554–5558. [Google Scholar]
- Burkhardt, E.E.; Schwartz, J.; Nakamae, S. Analysis of Superconducting Magnet (SCM)-Ground Coil Interactions for EDS Maglev Coil Configurations. IEEE Trans. Appl. Supercond. 1993, 3, 430–433. [Google Scholar] [CrossRef]
- Wang, P.J.; Chiueh, S.J. Analysis of Eddy-Current Brakes for High Speed Railway. IEEE Trans. Magn. 1998, 34, 1237–1239. [Google Scholar] [CrossRef]
- Anwar, S.; Stevenson, R.C. Torque Characteristics Analysis for Optimal Design of a Copper-Layered Eddy Current Brake System. Int. J. Automot. Technol. 2011, 12, 497–502. [Google Scholar] [CrossRef]
- Amati, N.; Tonoli, A.; Canova, A.; Cavalli, F.; Padovani, M. Dynamic Behavior of Torsional Eddy-Current Dampers: Sensitivity of the Design Parameters. IEEE Trans. Magn. 2007, 43, 3266–3277. [Google Scholar] [CrossRef]
- Iwanciw, P. Application of a High Speed, High Power Eddy Current Coupling on a Turbine Test Stand. In Proceedings of the Seventh International Conference on Electrical Machines and Drives, Durham, UK, 11–13 September 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 222–226. [Google Scholar]
- Praly, N.; Hillion, M.; Bonnal, C.; Laurent-Varin, J.; Petit, N. Study on the Eddy Current Damping of the Spin Dynamics of Space Debris from the Ariane Launcher Upper Stages. Acta Astronaut. 2012, 76, 145–153. [Google Scholar] [CrossRef]
- Miao, J. Design of Downhill Regenerative Braking Control Method for Hybrid Electric Vehicle. J. Vibroeng. 2023, 25, 745–756. [Google Scholar] [CrossRef]
- Guneser, M.T.; Ridha Othman, A. Enhancement of Regenerative Power Utilization for Electric Vehicle by Using Eddy Current Brake. In Proceedings of the 2021 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) and 2021 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 2–3 September 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 254–258. [Google Scholar]
- Li, W.; Tan, G.; Liu, Y.; Zhang, X.; Ye, Y.; He, X.; Pei, Y.; Yang, M.; Xiong, S. Regenerative Braking System Design for an Energy Recuperative Eddy Current Retarder. In Proceedings of the 2015 IEEE International Transportation Electrification Conference (ITEC), Chennai, India, 27–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 25, pp. 1–5. [Google Scholar]
- Sekino, M.; Ueno, S. FEM-Based Determination of Optimum Current Distribution in Transcranial Magnetic Stimulation as an Alternative to Electroconvulsive Therapy. IEEE Trans. Magn. 2004, 40, 2167–2169. [Google Scholar] [CrossRef]
- Abrams, R. Electroconvulsive Therapy; Oxford University Press: New York, NY, USA, 2002; ISBN 9780195148206. [Google Scholar]
- Sekino, M.; Hirata, M.; Sakihara, K.; Yorifuji, S.; Ueno, S. Intensity and Localization of Eddy Currents in Transcranial Magnetic Stimulation to the Cerebellum. IEEE Trans. Magn. 2006, 42, 3575–3577. [Google Scholar] [CrossRef]
- Shi, R.; Wang, Z.; Yang, D.; Hu, Y.; Zhang, Z.; Lan, D.; Su, Y.; Wang, Y. Short-Term and Long-Term Efficacy of Accelerated Transcranial Magnetic Stimulation for Depression: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 109. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.S.; Vila-Rodriguez, F.; Barwick, M.; Burke, M.J.; Downar, J.; Hunter, J.; Kaster, T.S.; Knyahnytska, Y.; Kurdyak, P.; Maunder, R.; et al. A Randomized Sham-Controlled Trial of High-Dosage Accelerated Intermittent Theta Burst RTMS in Major Depression: Study Protocol. BMC Psychiatry 2024, 24, 28. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, M.A.; White, T.L.; Barredo, J.; DeMayo, M.M.; DeLuca, E.; Harris, A.D.; Carpenter, L.L. Cortical Glutamate, Glx, and Total N-Acetylaspartate: Potential Biomarkers of Repetitive Transcranial Magnetic Stimulation Treatment Response and Outcomes in Major Depression. Transl Psychiatry 2024, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.J.; Park, H.J.; Yoo, Y.J.; Oh, H.M.; Im, S.; Kim, T.W.; Lim, S.H. Electric Field Simulation and Appropriate Electrode Positioning for Optimized Transcranial Direct Current Stimulation of Stroke Patients: An in Silico Model. Sci. Rep. 2024, 14, 2850. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.H.; Yu, X.M.; Lu, Y.; Wang, H.L.; Fu, W.; Zhou, H.X.; Li, Y.L.; Hu, J.; Xia, J.; Hu, Z.; et al. Effectiveness and Brain Mechanism of Multi-Target Transcranial Alternating Current Stimulation (TACS) on Motor Learning in Stroke Patients: Study Protocol for a Randomized Controlled Trial. Trials 2024, 25, 97. [Google Scholar] [CrossRef] [PubMed]
- Salazar, B.H.; Hoffman, K.A.; Lincoln, J.A.; Karmonik, C.; Rajab, H.; Helekar, S.A.; Khavari, R. Evaluating Noninvasive Brain Stimulation to Treat Overactive Bladder in Individuals with Multiple Sclerosis: A Randomized Controlled Trial Protocol. BMC Urol. 2024, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Yassine, I.A.; Shehata, H.; Hamdy, S.; Abdel-Naseer, M.; Hassan, T.; Sherbiny, M.; Magdy, E.; Elmazny, A.; Shalaby, N.; ElShebawy, H. Effect of High Frequency Repetitive Transcranial Magnetic Stimulation (RTMS) on the Balance and the White Matter Integrity in Patients with Relapsing-Remitting Multiple Sclerosis: A Long-Term Follow-up Study. Mult. Scler. Relat. Disord. 2024, 83, 105471. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Fox, M.D. Targeting Symptom-Specific Networks with Transcranial Magnetic Stimulation. Biol. Psychiatry 2024, 95, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Brunner, I.; Lundquist, C.B.; Pedersen, A.R.; Spaich, E.G.; Dosen, S.; Savic, A. Brain Computer Interface Training with Motor Imagery and Functional Electrical Stimulation for Patients with Severe Upper Limb Paresis after Stroke: A Randomized Controlled Pilot Trial. J. Neuroeng. Rehabil. 2024, 21, 10. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, X.; Jin, M.; Chen, J.; Feng, X.; Wang, J.; Yu, D.; Wang, R.; Lian, Y.; Huai, B.; et al. Priming Transcranial Direct Current Stimulation for Improving Hemiparetic Upper Limb in Patients with Subacute Stroke: Study Protocol for a Randomised Controlled Trial. BMJ Open 2024, 14, e079372. [Google Scholar] [CrossRef]
- Sato, T.; Sato, F.; Matsuki, H.; Sato, T. Computer Simulation of Eddy Current Loss Reduction for Rechargeable Cardiac Pacemaker. In Proceedings of the 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, Oahu, HI, USA, 12–15 May 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 120–121. [Google Scholar]
- Xiao, C.; Cheng, D.; Wei, K. An LCC-C Compensated Wireless Charging System for Implantable Cardiac Pacemakers: Theory, Experiment, and Safety Evaluation. IEEE Trans. Power Electron. 2018, 33, 4894–4905. [Google Scholar] [CrossRef]
- Xiao, C.; Wei, K.; Cheng, D.; Liu, Y. Wireless Charging System Considering Eddy Current in Cardiac Pacemaker Shell: Theoretical Modeling, Experiments, and Safety Simulations. IEEE Trans. Ind. Electron. 2017, 64, 3978–3988. [Google Scholar] [CrossRef]
- Pradhan, S.; Munsi, A.; Aditya, K. Ensuring Safe and Reliable Wireless Charging of Unmanned Aerial Vehicles: The Imperative for Foreign Object Detection Methods. In Proceedings of the 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Bhubaneswar, India, 9–12 August 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- Gencer, N.G.; Ider, Y.Z.; Williamson, S.J. Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System. IEEE Trans. Biomed. Eng. 1996, 43, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, T.E.; Ericson, M.N.; Meitner, S.J.; Baylor, L.R.; Gardner, W.L.; Bigelow, T.S.; Rasmussen, D.A. Design and Testing of a Prototype Eddy Current Actuated Valve for the ITER Shattered Pellet Injection System. IEEE Trans. Plasma Sci. 2022, 50, 4177–4181. [Google Scholar] [CrossRef]
- Dong, L.; Wu, H.; Sun, S. Research on the Influence of Projectile Width on the Efficiency of Reconnection Electromagnetic Launchers. IEEE Trans. Plasma Sci. 2022, 50, 496–501. [Google Scholar] [CrossRef]
- Hu, X.; Lu, J.; Zhang, Y.; Tan, S.; Li, B.; Zhang, J. Research on Delamination Failure of Insulator in Electromagnetic Rail Launcher. IEEE Trans. Plasma Sci. 2022, 50, 4987–4995. [Google Scholar] [CrossRef]
- Zheng, F.; Jiang, R.; Lu, M.; Qian, H.; Yue, F. Study on the Influence of Different Thickness of Armature Structure on the Emission Performance of Electromagnetic Induction Coil Launcher. J. Phys. Conf. Ser. 2022, 2247, 012025. [Google Scholar] [CrossRef]
- Wan, X.; Yang, S.; Li, Q.; Li, B. Time-Varying Inductance Gradient in Rails Based on Geometric Mean Distance. IEEE Trans. Plasma Sci. 2023, 51, 220–226. [Google Scholar] [CrossRef]
Reference | Excitation Coil | Magnetic Sensor | Acquire Hardware | Feature Estimated | Signal Component Used |
---|---|---|---|---|---|
[38] | Inductor composed of two orthogonal wires | GMR sensor | Lock-in amplifier | Geometrical features of cracks | Phase components of the GMR sensor |
[46] | Rectangular coil | GMR sensor | X-Y displacing GMR sensor array | Geometrical features of cracks | GMR output voltage |
[47] | Rectangular coil | GMR sensor | Xilinx XC3S400 field-programmable gate array | Geometrical features of cracks | Real and imaginary components of GMR output signal |
[48,49,50] | Handmade circular coil | GMR sensor | Instrumentation amplifier | Geometrical features of cracks | Filtered GMR output voltage |
[51] | Ferrite-core coil array | Coil array | FPGA Zynq-7020 | Geometrical features of cracks | Inductance variations |
[33] | 3MA probe | Hall sensor | LDC (inductance to digital converter) | Elongation | Complex impedance variations |
[52] | Rectangular coil | All sensor | Four-channel digital oscilloscope | Tensile stress | Frequency component of HFEC |
[53] | Computational method | Computational method | Computational method | Microtexture regions | Fuzzed EC-NDE and EBSD data |
Reference | Technique | Used Algorithm | Acquire Signal | Estimated Features |
---|---|---|---|---|
[46,55] | Image processing | Adaptive Wiener filter and background subtraction | Scanned GMR output signal | Width, depth, and length |
[56] | Image processing | 2-D filtering and spectral analysis | Scanned GMR output signal | Width, depth, and length |
[57] | Machine learning | Neural networks | Real and imaginary vector of GMR output signal | Width and depth |
[58] | Machine learning | Neural networks | Real and imaginary vector of GMR output signal | Width and depth |
[59,60] | Machine learning | Neural networks | Real and imaginary vector of GMR output signal | Width and depth |
[62] | Machine learning | Least-squares support vector machines | Output voltage vector of GMR sensor | Width, depth, and angle of orientation |
[63] | Machine learning | Support vector machines | Parameters DV and DX | Two of width, depth, and angle of orientation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Arismendi, N.O.; Olivares-Galvan, J.C.; Hernandez-Avila, J.L.; Escarela-Perez, R.; Jimenez-Mondragon, V.M.; Gonzalez-Montañez, F. Past, Present, and Future of New Applications in Utilization of Eddy Currents. Technologies 2024, 12, 50. https://doi.org/10.3390/technologies12040050
Romero-Arismendi NO, Olivares-Galvan JC, Hernandez-Avila JL, Escarela-Perez R, Jimenez-Mondragon VM, Gonzalez-Montañez F. Past, Present, and Future of New Applications in Utilization of Eddy Currents. Technologies. 2024; 12(4):50. https://doi.org/10.3390/technologies12040050
Chicago/Turabian StyleRomero-Arismendi, Nestor O., Juan C. Olivares-Galvan, Jose L. Hernandez-Avila, Rafael Escarela-Perez, Victor M. Jimenez-Mondragon, and Felipe Gonzalez-Montañez. 2024. "Past, Present, and Future of New Applications in Utilization of Eddy Currents" Technologies 12, no. 4: 50. https://doi.org/10.3390/technologies12040050
APA StyleRomero-Arismendi, N. O., Olivares-Galvan, J. C., Hernandez-Avila, J. L., Escarela-Perez, R., Jimenez-Mondragon, V. M., & Gonzalez-Montañez, F. (2024). Past, Present, and Future of New Applications in Utilization of Eddy Currents. Technologies, 12(4), 50. https://doi.org/10.3390/technologies12040050