Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies
Abstract
:1. Introduction
- To identify and extract the challenges of the BIM-AI integration;
- To categorise the challenges of the BIM-AI integration into taxonomies;
- To prioritise and propose a mitigation strategy map for the vital challenges of BIM-AI integration in the construction industry.
2. Materials and Methods
2.1. Research Strategy
2.2. Review Protocol
2.3. Literature Sampling
2.4. Metadata Extraction and Analysis
3. Results
3.1. Ranking of the Challenges of BIM-AI Integration in the Construction Industry
- High cost of software and hardware for integrated BIM-AI solutions;
- High cost of training and re-engineering for the use of BIM-AI in construction;
- Resistance to BIM-AI integration in strategic objectives;
- Shortage of integrated BIM-AI specialists;
- Inadequate experience in integrating BIM-AI;
- Limited industry best practice guidelines and standards for BIM-AI integration;
- Low interest of clients in integrated BIM-AI solutions in construction projects;
- Interoperability and industry foundation classes issues with integrated BIM-AI solutions;
- Data quality problems;
- Unknown return on investment of integrated BIM-AI solutions.
3.2. Taxonomies of the Challenges of BIM-AI Integration in Construction
3.2.1. Mean Citation Indices of the Taxonomies of Challenges of BIM-AI Integration
3.2.2. Pareto Analysis of the Taxonomies of Challenges of BIM-AI Integration
Technical Challenges
Knowledge-Related Challenges
Data-Related Challenges
Organisational Challenges
Managerial Challenges
Financial Challenges
3.3. Mitigation Strategy Map for BIM-AI Challenges in the Construction Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Reference | ID | Reference | ID | Reference |
---|---|---|---|---|---|
1 | Heidari et al., 2024 [1] | 23 | Khawaja and Mustapha 2021 [29] | 45 | Babatunde and Ekundayo 2019 [41] |
2 | Behzad et al., 2024 [31] | 24 | Babatunde et al., 2021 [36] | 46 | Marefat et al., 2019 [42] |
3 | Rangasamy and Yang, 2024 [2] | 25 | Arroteia et al., 2021 [43] | 47 | Liao et al., 2019 [44] |
4 | Abdulfattah et al., 2023 [8] | 26 | Wu et al., 2021 [35] | 48 | Zhou et al., 2019 [45] |
5 | Zhang et al., 2022 [14] | 27 | El Hajj et al., 2021 [46] | 49 | Gamil and Rahman 2019 [47] |
6 | Singh et al., 2022 [15] | 28 | Al-Yami and Sanni-Anibire 2021 [48] | 50 | Oesterreich and Teuteberg 2019 [49] |
7 | Pedral Sampaio et al., 2022 [16] | 29 | Khawaja and Mustapha 2021 [29] | 51 | Blay et al., 2019 [50] |
8 | Durdyev et al., 2022 [51] | 30 | Alemayehu et al., 2021 [52] | 52 | Chan et al., 2019 [53] |
9 | Hyarat et al., 2022 [54] | 31 | Ademci and Gundes 2021 [55] | 53 | Dao et al., 2019 [56] |
10 | Olanrewaju et al., 2022 [57] | 32 | Olanrewaju et al., 2020 [58] | 54 | Fitriani et al., 2019 [59] |
11 | Ma et al., 2022 [60] | 33 | Mostafa et al., 2020 [61] | 55 | Elagiry et al., 2019 [62] |
12 | Saka and Chan 2021 [63] | 34 | Saka and Chan 2020 [64] | 56 | Dao et al., 2019 [56] |
13 | Munir et al., 2021 [65] | 35 | Farooq et al., 2020 [66] | 57 | Olawumi et al., 2018 [67] |
14 | Lesniak et al., 2021 [68] | 36 | Al-Hammadi and Tian 2020 [69] | 58 | Hatem et al., 2018 [70] |
15 | Umar 2021 [71] | 37 | Van Roy and Firdaus 2020 [72] | 59 | Belayutham et al., 2018 [73] |
16 | Evans and Farrell 2021 [74] | 38 | Ma et al., 2020 [75] | 60 | Costin et al., 2018 [76] |
17 | Hire et al., 2021 [77] | 39 | Deng et al., 2020 [78] | 61 | Sreelakshmi et al., 2017 [79] |
18 | Olugboyega and Windapo 2021 [80] | 40 | Tan et al., 2019 [81] | 62 | Bosch-Sijtsema et al., 2017 [82] |
19 | Manzoor et al., 2021 [83] | 41 | Oraee et al., 2019 [84] | 63 | Li et al., 2017 [85] |
20 | Nguyen and Nguyen 2021 [86] | 42 | Li et al., 2019 [87] | 64 | Enshassi et al., 2016 [88] |
21 | Durdyev et al., 2021 [89] | 43 | Zhang et al., 2019 [90] | - | |
22 | Casasayas et al., 2021 [91] | 44 | Dixit et al., 2019 [92] |
References
- Heidari, A.; Peyvastehgar, Y.; Amanzadegan, M. A Systematic Review of the BIM in Construction: From Smart Building Management to Interoperability of BIM & AI. Archit. Sci. Rev. 2024, 67, 237–254. [Google Scholar] [CrossRef]
- Rangasamy, V.; Yang, J.-B. The Convergence of BIM, AI and IoT: Reshaping the Future of Prefabricated Construction. J. Build. Eng. 2024, 84, 108606. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modelling for Owners, Managers, Designers, Engineers and Contractors, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9780470185285. [Google Scholar]
- Barlish, K.; Sullivan, K. How to Measure the Benefits of BIM—A Case Study Approach. Autom. Constr. 2012, 24, 149–159. [Google Scholar] [CrossRef]
- Succar, B. Building Information Modelling Framework: A Research and Delivery Foundation for Industry Stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Sacks, R.; Girolami, M.; Brilakis, I. Building Information Modelling, Artificial Intelligence and Construction Tech. Dev. Built Environ. 2020, 4, 100011. [Google Scholar] [CrossRef]
- Abdulfattah, B.S.; Abdelsalam, H.A.; Abdelsalam, M.; Bolpagni, M.; Thurairajah, N.; Perez, L.F.; Butt, T.E. Predicting Implications of Design Changes in BIM-Based Construction Projects through Machine Learning. Autom. Constr. 2023, 155, 105057. [Google Scholar] [CrossRef]
- Zabin, A.; González, V.A.; Zou, Y.; Amor, R. Applications of Machine Learning to BIM: A Systematic Literature Review. Adv. Eng. Inform. 2022, 51, 101474. [Google Scholar] [CrossRef]
- McAleenan, P. Moral Responsibility and Action in the Use of Artificial Intelligence in Construction. Proc. Inst. Civ. Eng. Manag. Procure. Law 2020, 173, 166–174. [Google Scholar] [CrossRef]
- Makarius, E.E.; Mukherjee, D.; Fox, J.D.; Fox, A.K. Rising with the Machines: A Sociotechnical Framework for Bringing Artificial Intelligence into the Organization. J. Bus. Res. 2020, 120, 262–273. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Zhang, F.; Chan, A.P.C.; Darko, A.; Chen, Z.; Li, D. Integrated Applications of Building Information Modeling and Artificial Intelligence Techniques in the AEC/FM Industry. Autom. Constr. 2022, 139, 104289. [Google Scholar] [CrossRef]
- Singh, M.M.; Deb, C.; Geyer, P. Early-Stage Design Support Combining Machine Learning and Building Information Modelling. Autom. Constr. 2022, 136, 104147. [Google Scholar] [CrossRef]
- Pedral Sampaio, R.; Aguiar Costa, A.; Flores-Colen, I. A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions. Buildings 2022, 12, 1939. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; The Cochrane Collaboration and John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; ISBN 9781119536628. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIsMa Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Sepasgozar, S.; Liu, T.; Yu, R. Integration of Bim and Immersive Technologies for Aec: A Scientometric-swot Analysis and Critical Content Review. Buildings 2021, 11, 126. [Google Scholar] [CrossRef]
- Levy, Y.; Ellis, T.J. A Systems Approach to Conduct an Effective Literature Review in Support of Information Systems Research. Informing Sci. J. 2006, 9, 181–212. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the Past To Prepare for the Future: Writing a Literature Review. MIS Q. 2002, 26, xiii. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering—EASE ’14, London, UK, 13–14 May 2014; Association for Computing Machinery (ACM): London, UK, 2014; pp. 1–10. [Google Scholar]
- Sajid, Z.W.; Aftab, U.; Ullah, F. Barriers to Adopting Circular Procurement in the Construction Industry: The Way Forward. Sustain. Futur. 2024, 8, 100244. [Google Scholar] [CrossRef]
- Craft, R.C.; Leake, C. The Pareto Principle in Organizational Decision Making. Manag. Decis. 2002, 40, 729–733. [Google Scholar] [CrossRef]
- Powell, T.; Sammut-Bonnici, T. Pareto Analysis. In Wiley Encyclopedia of Management; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–2. ISBN 9781118785317. [Google Scholar]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Rodrigues, F.; Alves, A.D.; Matos, R. Construction Management Supported by BIM and a Business Intelligence Tool. Energies 2022, 15, 3412. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial Intelligence in the AEC Industry: Scientometric Analysis and Visualization of Research Activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Khawaja, E.U.; Mustapha, A. Mitigating Disputes and Managing Legal Issues in the Era of Building Information Modelling. J. Constr. Dev. Ctries. 2021, 26, 111–130. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to Digital Twins: A Systematic Review of the Evolution of Intelligent Building Representations in the AEC-FM Industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Behzad, A.; Araz, N.; Sophia, D.; Abebe, D.; Madhav, P.N.; Yiliao, S. Measuring BIM Implementation: A Mathematical Modeling and Artificial Neural Network Approach. J. Constr. Eng. Manag. 2024, 150, 4024032. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Villena-Manzanares, F.; García-Segura, T.; Pellicer, E. Organizational Factors That Drive to Bim Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support. Appl. Sci. 2021, 11, 199. [Google Scholar] [CrossRef]
- Omar, M.F.; Nursal, A.T.; Nawi, M.N.M.; Haron, A.T.; Goh, K.C. A Preliminary Requirement of Decision Support System for Building Information Modelling Software Selection. Malaysian Constr. Res. J. 2014, 15, 11–28. [Google Scholar]
- Wu, P.; Jin, R.; Xu, Y.; Lin, F.; Dong, Y.; Pan, Z. The Analysis of Barriers to Bim Implementation for Industrialized Building Construction: A China Study. J. Civ. Eng. Manag. 2021, 27, 1–13. [Google Scholar] [CrossRef]
- Babatunde, S.O.; Udeaja, C.; Adekunle, A.O. Barriers to BIM Implementation and Ways Forward to Improve Its Adoption in the Nigerian AEC Firms. Int. J. Build. Pathol. Adapt. 2021, 39, 48–71. [Google Scholar] [CrossRef]
- Abrishami, S.; Goulding, J.; Rahimian, F. Generative BIM Workspace for AEC Conceptual Design Automation: Prototype Development. Eng. Constr. Archit. Manag. 2021, 28, 482–509. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.C.; Darko, A. Artificial Intelligence in Green Building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Rane, N. Integrating Building Information Modelling (BIM) and Artificial Intelligence (AI) for Smart Construction Schedule, Cost, Quality, and Safety Management: Challenges and Opportunities. SSRN Electron. J. 2023, 30, 1–30. [Google Scholar] [CrossRef]
- Pan, Y. Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Arch. Comput. Methods Eng. 2022, 30, 1–30. [Google Scholar] [CrossRef]
- Babatunde, S.O.; Ekundayo, D. Barriers to the Incorporation of BIM into Quantity Surveying Undergraduate Curriculum in the Nigerian Universities. J. Eng. Des. Technol. 2019, 17, 629–648. [Google Scholar] [CrossRef]
- Marefat, A.; Toosi, H.; Mahmoudi Hasankhanlo, R. A BIM Approach for Construction Safety: Applications, Barriers and Solutions. Eng. Constr. Archit. Manag. 2019, 26, 1855–1877. [Google Scholar] [CrossRef]
- Arrotéia, A.V.; Freitas, R.C.; Melhado, S.B. Barriers to BIM Adoption in Brazil. Front. Built Environ. 2021, 7, 520154. [Google Scholar] [CrossRef]
- Liao, L.; Teo, E.A.L.; Chang, R. Reducing Critical Hindrances to Building Information Modeling Implementation: The Case of the Singapore Construction Industry. Appl. Sci. 2019, 9, 3833. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Yang, J.-B. Barriers to BIM Implementation Strategies in China. Eng. Constr. Archit. Manag. 2019, 26, 554–574. [Google Scholar] [CrossRef]
- El Hajj, C.; Martínez Montes, G.; Jawad, D. An Overview of BIM Adoption Barriers in the Middle East and North Africa Developing Countries. Eng. Constr. Archit. Manag. 2023, 30, 889–913. [Google Scholar] [CrossRef]
- Gamil, Y.; Rahman, I.A.R. Awareness and Challenges of Building Information Modelling (BIM) Implementation in the Yemen Construction Industry. J. Eng. Des. Technol. 2019, 17, 1077–1084. [Google Scholar] [CrossRef]
- Al-Yami, A.; Sanni-Anibire, M.O. BIM in the Saudi Arabian Construction Industry: State of the Art, Benefit and Barriers. Int. J. Build. Pathol. Adapt. 2021, 39, 33–47. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Behind the Scenes: Understanding the Socio-Technical Barriers to BIM Adoption through the Theoretical Lens of Information Systems Research. Technol. Forecast. Soc. Chang. 2019, 146, 413–431. [Google Scholar] [CrossRef]
- Blay, K.B.; Tuuli, M.M.; France-Mensah, J. Managing Change in BIM-Level 2 Projects: Benefits, Challenges, and Opportunities. Built Environ. Proj. Asset Manag. 2019, 9, 581–596. [Google Scholar] [CrossRef]
- Durdyev, S.; Ashour, M.; Connelly, S.; Mahdiyar, A. Barriers to the Implementation of Building Information Modelling (BIM) for Facility Management. J. Build. Eng. 2022, 46, 103736. [Google Scholar] [CrossRef]
- Alemayehu, S.; Nejat, A.; Ghebrab, T.; Ghosh, S. A Multivariate Regression Approach toward Prioritizing BIM Adoption Barriers in the Ethiopian Construction Industry. Eng. Constr. Archit. Manag. 2022, 29, 2635–2664. [Google Scholar] [CrossRef]
- Chan, D.W.M.; Olawumi, T.O.; Ho, A.M.L. Perceived Benefits of and Barriers to Building Information Modelling (BIM) Implementation in Construction: The Case of Hong Kong. J. Build. Eng. 2019, 25, 100764. [Google Scholar] [CrossRef]
- Hyarat, E.; Hyarat, T.; Al Kuisi, M. Barriers to the Implementation of Building Information Modeling among Jordanian AEC Companies. Buildings 2022, 12, 150. [Google Scholar] [CrossRef]
- Ademci, E.; Gundes, S. Individual and Organisational Level Drivers and Barriers to Building Information Modelling. J. Constr. Dev. Ctries. 2021, 26, 89–109. [Google Scholar] [CrossRef]
- Dao, T.-N.; Nguyen, Q.; Chen, P.-H. BIM Adoption in Construction Projects Funded with State-Managed Capital in Vietnam: Legal Issues and Proposed Solutions. In CIGOS 2019, Innovation for Sustainable Infrastructure; Springer: Singapore, 2019; pp. 1211–1216. ISBN 978-981-15-0801-1. [Google Scholar]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the Relationship between Building Information Modelling (BIM) Implementation Barriers, Usage and Awareness on Building Project Lifecycle. Build. Environ. 2022, 207, 108556. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Chileshe, N.; Babarinde, S.A.; Sandanayake, M. Investigating the Barriers to Building Information Modeling (BIM) Implementation within the Nigerian Construction Industry. Eng. Constr. Archit. Manag. 2020, 27, 2931–2958. [Google Scholar] [CrossRef]
- Fitriani, H.; Budiarto, A.; Ajayi, S.; Idris, Y. Implementing BIM in Architecture, Engineering and Construction Companies: Perceived Benefits and Barriers among Local Contractors in Palembang, Indonesia. Int. J. Constr. Supply Chain Manag. 2019, 9, 20–34. [Google Scholar] [CrossRef]
- Ma, L.; Lovreglio, R.; Yi, W.; Yiu, T.W.; Shan, M. Barriers and Strategies for Building Information Modelling Implementation: A Comparative Study between New Zealand and China. Int. J. Constr. Manag. 2022, 23, 2067–2076. [Google Scholar] [CrossRef]
- Mostafa, S.; Kim, K.P.; Tam, V.W.Y.; Rahnamayiezekavat, P. Exploring the Status, Benefits, Barriers and Opportunities of Using BIM for Advancing Prefabrication Practice. Int. J. Constr. Manag. 2020, 20, 146–156. [Google Scholar] [CrossRef]
- Elagiry, M.; Marino, V.; Lasarte, N.; Elguezabal, P.; Messervey, T. BIM4Ren: Barriers to BIM Implementation in Renovation Processes in the Italian Market. Buildings 2019, 9, 200. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.M. BIM Divide: An International Comparative Analysis of Perceived Barriers to Implementation of BIM in the Construction Industry. J. Eng. Des. Technol. 2023, 21, 1604–1632. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.M. Profound Barriers to Building Information Modelling (BIM) Adoption in Construction Small and Medium-Sized Enterprises (SMEs): An Interpretive Structural Modelling Approach. Constr. Innov. 2020, 20, 261–284. [Google Scholar] [CrossRef]
- Munir, M.; Kiviniemi, A.; Jones, S.; Finnegan, S. BIM Business Value for Asset Owners: Key Issues and Challenges. Int. J. Build. Pathol. Adapt. 2021, 39, 135–151. [Google Scholar] [CrossRef]
- Farooq, U.; Ur Rehman, S.K.; Javed, M.F.; Jameel, M.; Aslam, F.; Alyousef, R. Investigating Bim Implementation Barriers and Issues in Pakistan Using Ism Approach. Appl. Sci. 2020, 10, 7250. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M.; Wong, J.K.W.; Chan, A.P.C. Barriers to the Integration of BIM and Sustainability Practices in Construction Projects: A Delphi Survey of International Experts. J. Build. Eng. 2018, 20, 60–71. [Google Scholar] [CrossRef]
- Leśniak, A.; Górka, M.; Skrzypczak, I. Barriers to Bim Implementation in Architecture, Construction, and Engineering Projects—The Polish Study. Energies 2021, 14, 2090. [Google Scholar] [CrossRef]
- Al-Hammadi, M.A.; Tian, W. Challenges and Barriers of Building Information Modeling Adoption in the Saudi Arabian Construction Industry. Open Constr. Build. Technol. J. 2020, 14, 98–110. [Google Scholar] [CrossRef]
- Hatem, W.A.; Abd, A.M.; Abbas, N.N. Barriers of Adoption Building Information Modeling (BIM) in Construction Projects of Iraq. Eng. J. 2018, 22, 59–81. [Google Scholar] [CrossRef]
- Umar, T. Challenges of BIM Implementation in GCC Construction Industry. Eng. Constr. Archit. Manag. 2022, 29, 1139–1168. [Google Scholar] [CrossRef]
- Van Roy, A.F.; Firdaus, A. Building Information Modelling in Indonesia: Knowledge, Implementation and Barriers. J. Constr. Dev. Ctries. 2020, 25, 199–217. [Google Scholar] [CrossRef]
- Belayutham, S.; Zabidin, N.S.; Ibrahim, C.K.I.C. Dynamic Representation of Barriers for Adopting Building Information Modelling in Malaysian Tertiary Education. Constr. Econ. Build. 2018, 18, 24–44. [Google Scholar] [CrossRef]
- Evans, M.; Farrell, P. Barriers to Integrating Building Information Modelling (BIM) and Lean Construction Practices on Construction Mega-Projects: A Delphi Study. Benchmarking 2021, 28, 652–669. [Google Scholar] [CrossRef]
- Ma, X.; Darko, A.; Chan, A.P.C.; Wang, R.; Zhang, B. An Empirical Analysis of Barriers to Building Information Modelling (BIM) Implementation in Construction Projects: Evidence from the Chinese Context. Int. J. Constr. Manag. 2022, 22, 3119–3127. [Google Scholar] [CrossRef]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for Transportation Infrastructure—Literature Review, Applications, Challenges, and Recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Hire, S.; Sandbhor, S.; Ruikar, K.; Amarnath, C.B. BIM Usage Benefits and Challenges for Site Safety Application in Indian Construction Sector. Asian J. Civ. Eng. 2021, 22, 1249–1267. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Wu, Q.; Pei, S.; Xu, N.; Ni, G. Using Network Theory to Explore Bim Application Barriers for BIM Sustainable Development in China. Sustain. 2020, 12, 3190. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Kantilal, B.S.; Roshan, M.; Gopinath, S. A Study on the Barriers to the Implementation of Building Information Modeling. Int. J. Civ. Eng. Technol. 2017, 8, 42–50. [Google Scholar]
- Olugboyega, O.; Windapo, A.O. Structural Equation Model of the Barriers to Preliminary and Sustained BIM Adoption in a Developing Country. Constr. Innov. 2022, 22, 849–869. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Xue, F.; Lu, W.S. Barriers to Building Information Modeling (BIM) Implementation in China’s Prefabricated Construction: An Interpretive Structural Modeling (ISM) Approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Bosch-Sijtsema, P.; Isaksson, A.; Lennartsson, M.; Linderoth, H.C.J. Barriers and Facilitators for BIM Use among Swedish Medium-Sized Contractors—“We Wait until Someone Tells Us to Use It. ” Vis. Eng. 2017, 5, 3. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Gardezi, S.S.S.; Altan, H.; Abdalla, S.B. Bim-Based Research Framework for Sustainable Building Projects: A Strategy for Mitigating Bim Implementation Barriers. Appl. Sci. 2021, 11, 5397. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Edwards, D.J.; Li, H.; Papadonikolaki, E.; Cao, D. Collaboration Barriers in BIM-Based Construction Networks: A Conceptual Model. Int. J. Proj. Manag. 2019, 37, 839–854. [Google Scholar] [CrossRef]
- Li, H.; Thomas Ng, S.T.; Skitmore, M.; Zhang, X.; Jin, Z. Barriers to Building Information Modelling in the Chinese Construction Industry. Proc. Inst. Civ. Eng. Munic. Eng. 2017, 170, 105–115. [Google Scholar] [CrossRef]
- Nguyen, T.-Q.; Nguyen, D.-P. Barriers in Bim Adoption and the Legal Considerations in Vietnam. Int. J. Sustain. Constr. Eng. Technol. 2021, 12, 283–295. [Google Scholar] [CrossRef]
- Li, P.; Zheng, S.; Si, H.; Xu, K. Critical Challenges for BIM Adoption in Small and Medium-Sized Enterprises: Evidence from China. Adv. Civ. Eng. 2019, 2019. [Google Scholar] [CrossRef]
- Enshassi, A.; Ayyash, A.; Choudhry, R.M. BIM for Construction Safety Improvement in Gaza Strip: Awareness, Applications and Barriers. Int. J. Constr. Manag. 2016, 16, 249–265. [Google Scholar] [CrossRef]
- Durdyev, S.; Mbachu, J.; Thurnell, D.; Zhao, L.; Reza Hosseini, M. BIM Adoption in the Cambodian Construction Industry: Key Drivers and Barriers. ISPRS Int. J. Geo-Inf. 2021, 10, 215. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, Z.; He, Q.; Zhai, P. Investigating the Constraints to Buidling Information Modeling (BIM) Applications for Sustainable Building Projects: A Case of China. Sustainability 2019, 11, 1896. [Google Scholar] [CrossRef]
- Casasayas, O.; Hosseini, M.R.; Edwards, D.J.; Shuchi, S.; Chowdhury, M. Integrating BIM in Higher Education Programs: Barriers and Remedial Solutions in Australia. J. Archit. Eng. 2021, 27, 05020010. [Google Scholar] [CrossRef]
- Dixit, M.K.; Venkatraj, V.; Ostadalimakhmalbaf, M.; Pariafsai, F.; Lavy, S. Integration of Facility Management and Building Information Modeling (BIM): A Review of Key Issues and Challenges. Facilities 2019, 37, 455–483. [Google Scholar] [CrossRef]
ID | Challenges | F | Rank |
---|---|---|---|
TC | Technical challenges | ||
TC1 | Shortage of integrated BIM-AI specialists | 40 | 4 |
TC2 | Interoperability and industry foundation class issues with integrated BIM-AI solutions | 36 | 8 |
TC3 | Limited compatibility of BIM-AI during the early stages of projects | 33 | 11 |
TC4 | The complexity of the integrated BIM-AI requirements in the project lifecycle | 15 | 28 |
TC5 | Inadequate capabilities to use integrated BIM-AI solutions during design and construction | 13 | 30 |
TC6 | The increased workload required to adopt integrated BIM-AI solutions | 13 | 30 |
TC7 | Difficulties integrating AI with different LODs and dimensions of BIM | 6 | 36 |
KC | Knowledge-related challenges | ||
KC1 | Inadequate experience in integrating BIM-AI | 39 | 5 |
KC2 | Inadequate training and knowledge of BIM-AI integrated applications in construction projects | 31 | 12 |
KC3 | The unfamiliarity of the project teams and practitioners with BIM-AI integration | 19 | 21 |
KC4 | Poor understanding of BIM-AI requirements in construction projects | 17 | 25 |
KC5 | Insufficient BIM-AI technical knowledge among practitioners | 16 | 26 |
KC6 | Limited understanding of AI models and outcomes among construction professionals | 5 | 38 |
DC | Data-related challenges | ||
DC1 | Data quality problems | 35 | 9 |
DC2 | Data fragmentation, storage, licensing, and ownership issues | 27 | 14 |
DC3 | Poor BIM-AI data sharing and accessibility in the construction industry | 19 | 21 |
DC4 | Intellectual property rights and data ownership issues | 14 | 29 |
DC5 | Data loss, theft, virus attacks, and cyberattacks | 6 | 36 |
OC | Organisational challenges | ||
OC1 | Resistance to BIM-AI integration in strategic objectives | 43 | 3 |
OC2 | Lack of support from the top management of the construction organisation | 30 | 13 |
OC3 | Lack of integrated software providers and technological availabilities | 26 | 15 |
OC4 | Incompatibility of industry legacy systems with integrated BIM-AI solutions | 20 | 20 |
OC5 | Inadequate pilot projects and successful business models for integrated BIM-AI solutions | 19 | 21 |
OC6 | Unavailability of BIM-AI integrated software solutions | 16 | 26 |
OC7 | Inadequate network connectivity and power required to handle large data | 13 | 30 |
MC | Managerial challenges | ||
MC1 | Limited industry best practice guidelines and standards for BIM-AI integration | 39 | 5 |
MC2 | Low interest of clients in integrated BIM-AI solutions in construction projects | 38 | 7 |
MC3 | Lack of legal framework and contractual documents for integrated BIM-AI solutions | 26 | 15 |
MC4 | Lack of collaboration among project parties and other stakeholders | 25 | 17 |
MC5 | Extensive managerial changes required to support BIM-AI applications | 22 | 19 |
MC6 | Lack of dispute resolution and litigation protocols for integrated BIM-AI solutions | 12 | 33 |
MC7 | Poor industry risk allocation schemes for integrated BIM-AI solutions | 9 | 35 |
MC8 | Unsupportive project delivery and procurement systems | 5 | 38 |
FC | Financial challenges | ||
FC1 | High cost of software and hardware for integrated BIM-AI solutions | 49 | 1 |
FC2 | High cost for training and re-engineering for the use of BIM-AI in construction | 46 | 2 |
FC3 | Unknown return on investment of integrated BIM-AI solutions | 34 | 10 |
FC4 | Huge upfront investment costs to adopt integrated BIM-AI solutions | 25 | 17 |
FC5 | Lack of government promotions and financial incentives for integrated BIM-AI applications | 18 | 24 |
FC6 | Unproven project and business benefits of integrated BIM-AI solutions | 11 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.A.; Bello, A.O.; Arqam, M.; Ullah, F. Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies. Technologies 2024, 12, 185. https://doi.org/10.3390/technologies12100185
Khan AA, Bello AO, Arqam M, Ullah F. Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies. Technologies. 2024; 12(10):185. https://doi.org/10.3390/technologies12100185
Chicago/Turabian StyleKhan, Ayaz Ahmad, Abdulkabir Opeyemi Bello, Mohammad Arqam, and Fahim Ullah. 2024. "Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies" Technologies 12, no. 10: 185. https://doi.org/10.3390/technologies12100185
APA StyleKhan, A. A., Bello, A. O., Arqam, M., & Ullah, F. (2024). Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies. Technologies, 12(10), 185. https://doi.org/10.3390/technologies12100185