FPGA Implementation of Sliding Mode Control and Proportional-Integral-Derivative Controllers for a DC–DC Buck Converter
Abstract
:1. Introduction
2. DC–DC Buck Converter
3. SMC and PID Controllers
3.1. SMC Controller
3.2. PID Controller
4. FPGA Implementation of the SMC and PID Controllers for a DC–DC Buck Converter
4.1. FPGA Implementation of the SMC Controller
4.2. FPGA Implementation of the PID Controller
5. FPGA Hardware Resources and Experimental Results
5.1. Simulation of Variations and Experimental Results from the FPGA Implementation of the SMC Controller
5.2. Simulation of Variations and Experimental Results from the FPGA Implementation of the PID Controller
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Prieto, J.A. Finite time adaptive smooth nonlinear control of DC-DC buck converters operating in CCM and DCM. Int. J. Dyn. Control 2023, 11, 619–636. [Google Scholar] [CrossRef]
- Huerta-Moro, S.; Martínez-Fuentes, O.; Gonzalez-Diaz, V.R.; Tlelo-Cuautle, E. On the Sliding Mode Control Applied to a DC-DC Buck Converter. Technologies 2023, 11, 33. [Google Scholar] [CrossRef]
- Alsarayreh, S.; Suto, Z. Optimal Selection of Switch Model Parameters for ADC-Based Power Converters. Energies 2024, 17, 56. [Google Scholar] [CrossRef]
- Usta, M.A.; Sahin, E. Detailed analysis and modeling of an improved cascade buck converter. Int. J. Electron. 2023. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Tan, Z.; Zhao, M.; Ding, Y.; Li, W.; Lu, Y.; Qu, W. A High-Efficiency Wide Output Range Reconfigurable Capacitive-Sigma DC-DC Converter. IEEE J. Solid-State Circuits 2023, 59, 1532–1542. [Google Scholar] [CrossRef]
- Hinov, N.; Grigorova, T. Design Considerations of Multi-Phase Buck DC-DC Converter. Appl. Sci. 2023, 13, 11064. [Google Scholar] [CrossRef]
- Sun, M.; Chen, C.; Wang, L.; Xie, X.; Wang, Y.; Xu, M. A Fast Transient Adaptive On-Time Controlled BUCK Converter with Dual Modulation. Micromachines 2023, 14, 1868. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z.; An, F.; Liu, B. Self-tuning PID feedback control method for magnetic suspension active vibration isolation system with parameters uncertainty. J. Vib. Control 2024, 10775463241228018. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, B. A simplified model-based nonlinear control with fast response and simple design flow for HB-LLC resonant converter. Int. J. Circuit Theory Appl. 2024, 52, 4535–4555. [Google Scholar] [CrossRef]
- Covaciu, F. Development of a control program for dc motors using pid control and low-pass filter. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2023, 66, 191–198. [Google Scholar]
- Liu, J.; Chen, S.; Cai, S.; Xu, C. A proposal on centralised and distributed optimisation via proportional-integral-derivative controllers (PID) control perspective. IET Cyber-Syst. Robot. 2023, 5, e12100. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Yan, H. Ant colony optimization-based adjusted PID parameters: A proposed method. PeerJ Comput. Sci. 2023, 9, e1660. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Zhang, W.; Luo, X.; Hu, L.; Zhang, Z.; Wang, M.; Li, H.; Peng, M.; Wu, X.; Hu, L.; et al. Gain self-adjusting single neuron PID control method and experiments for longitudinal relative position of harvester and transport vehicle. Comput. Electron. Agric. 2023, 213, 108215. [Google Scholar] [CrossRef]
- Acosta-Rodriguez, R.A.; Martinez-Sarmiento, F.H.; Munoz-Hernandez, G.A.; Mino-Aguilar, G.; Portilla-Flores, E.A.; Nino-Suarez, P.A.; Salcedo-Parra, O.J. Validation of Sliding Mode and Passivity Control in High-Power Quadratic Buck Converter through Rapid Prototyping. IEEE Access 2024, 12, 8668–8699. [Google Scholar] [CrossRef]
- Garcia-Vellisca, M.A.; Munoz, C.Q.G.; Martinez-Garcia, M.S.; de Castro, A. Automatic Word Length Selection with Boundary Conditions for HIL of Power Converters. Electronics 2023, 12, 3488. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, C.; Zhang, Y.; Ruan, M.; Li, P. Event-Triggered Fractional PID-Based Load Frequency Control in Islanded Microgrids under Cloud-Edge Collaborative Framework. J. Circuits Syst. Comput. 2024, 33, 2450167. [Google Scholar] [CrossRef]
- Ashok, B.; Michael, P.A. Integration of cascaded controllers for super-lift Luo converter with buck converter in solar photovoltaic and electric vehicle. Analog. Integr. Circuits Signal Process. 2024, 118, 449–466. [Google Scholar] [CrossRef]
- Xiang, B.; Mao, X.; Liu, Z.; Wang, H. Stabilization of isolated hybrid microgrids with electric vehicle-based energy storage systems using a fractional order proportional-integral-derivative control. Int. J. Green Energy 2023, 21, 2155–2165. [Google Scholar] [CrossRef]
- Sangeetha, S.; Revathi, B.S.; Balamurugan, K.; Suresh, G. Performance analysis of buck converter with fractional PID controller using hybrid technique. Robot. Auton. Syst. 2023, 169, 104515. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers; Mcgraw-Hill: New York, NY, USA, 2011; Volume 1221. [Google Scholar]
- Ghamari, S.M.; Khavari, F.; Mollaee, H. Lyapunov-based adaptive PID controller design for buck converter. Soft Comput. 2023, 27, 5741–5750. [Google Scholar] [CrossRef]
- Tarkhani, R.; Krim, S.; Mimouni, M.F. Rapid Prototyping and Hardware-In-the-Loop Verification of Enhanced Sliding Mode Control of an Asynchronous Machine Using a Xilinx System Generator and an FPGA-Zynq Board. Electr. Power Components Syst. 2024. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Tamba, V.K.; Metsebo, J.; Ngatcha, D.T.; Rajagopal, K. Control, synchronisation and antisynchronisation of chaos in two non-identical Josephson junction models via sliding mode control and its FPGA implementation. Pramana-J. Phys. 2023, 97, 46. [Google Scholar] [CrossRef]
- Zhang, Z.; Nan, Q. Adaptive Network-Based Fuzzy Inference System-Proportional-Integral-Derivative Controller Based on FPGA and Its Application in Radiofrequency Ablation Temperature Control. Appl. Sci. 2024, 14, 4510. [Google Scholar] [CrossRef]
- Ali, A.; Bingi, K.; Ibrahim, R.; Devan, P.A.M.; Devika, K.B. A review on FPGA implementation of fractional-order systems and PID controllers. AEU-Int. J. Electron. Commun. 2024, 177, 155218. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; De La Fraga, L.; Rangel-Magdaleno, J. Engineering Applications of FP-GAs; Springer: Cham, Switzerland, 2016. [Google Scholar]
Component | Definition | Value |
---|---|---|
E | Supply voltage | 5 V |
Desired voltage | 3.3 V | |
R | Resistor | 75 |
L | Inductor | 20 mH |
C | Capacitor | 100 μF |
Controller | Parameter | Value |
---|---|---|
PID | 8.3413 | |
22.7361 | ||
0.0086 | ||
SMC | 500 | |
1 |
Sign | Integer | Decimal |
---|---|---|
1 bit | 9 bits | 22 bits |
0 | 000000000 | 0.0000000000000000000000 |
Sign | Integer | Decimal |
---|---|---|
1 bit | 10 bits | 21 bits |
0 | 0000000000 | 0.000000000000000000000 |
Controller | Bits | Logic Elements | Registers | Embedded Multiplier 9 bit | Maximum Frequency (MHz) |
---|---|---|---|---|---|
SMC | 32 | 1161 | 221 | 32 | 47.61 |
SMC | 64 | 3939 | 317 | 207 | 24.9 |
PID | 32 | 1096 | 220 | 24 | 40.2 |
PID | 64 | 4002 | 316 | 199 | 21.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Moro, S.; Tavizón-Aldama, J.D.; Tlelo-Cuautle, E. FPGA Implementation of Sliding Mode Control and Proportional-Integral-Derivative Controllers for a DC–DC Buck Converter. Technologies 2024, 12, 184. https://doi.org/10.3390/technologies12100184
Huerta-Moro S, Tavizón-Aldama JD, Tlelo-Cuautle E. FPGA Implementation of Sliding Mode Control and Proportional-Integral-Derivative Controllers for a DC–DC Buck Converter. Technologies. 2024; 12(10):184. https://doi.org/10.3390/technologies12100184
Chicago/Turabian StyleHuerta-Moro, Sandra, Jonathan Daniel Tavizón-Aldama, and Esteban Tlelo-Cuautle. 2024. "FPGA Implementation of Sliding Mode Control and Proportional-Integral-Derivative Controllers for a DC–DC Buck Converter" Technologies 12, no. 10: 184. https://doi.org/10.3390/technologies12100184
APA StyleHuerta-Moro, S., Tavizón-Aldama, J. D., & Tlelo-Cuautle, E. (2024). FPGA Implementation of Sliding Mode Control and Proportional-Integral-Derivative Controllers for a DC–DC Buck Converter. Technologies, 12(10), 184. https://doi.org/10.3390/technologies12100184