Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy
Abstract
:1. Introduction
2. Model Building
3. Control Strategy
4. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Li, K.; Lu, M. Balancing Method Based on Flyback Converter for Series-Connected Cells. IEEE Access 2021, 9, 52393–52403. [Google Scholar] [CrossRef]
- Che, Y.; Deng, Z.; Tang, X.; Lin, X.; Nie, X.; Hu, X. Lifetime and Aging Degradation Prognostics for Lithium-ion Battery Packs Based on a Cell to Pack Method. Chin. J. Mech. Eng. 2022, 35, 4. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, S.; Wu, B.; Fernandez, C.; Xiong, X.; Coffie-Ken, J. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy 2021, 219, 119603. [Google Scholar] [CrossRef]
- Yu, X.; Bao, A. Tian Liantao and the Discipline Construction of Chinese Minority Music. J. Cent. Conserv. Music 2022, 169, 63–72. [Google Scholar]
- Yu, X. Research on Contemporary Minority Musicians from the Perspective of Oral History. Arts Crit. 2020, 201, 84–93. [Google Scholar]
- Yu, X. The Oral History Path in the Study of Contemporary Musicians: Significance, Theory, and Method. Hundred Sch. Arts 2022, 38, 113–119. [Google Scholar]
- Yu, X.; Ma, N.; Zheng, L.; Wang, L.; Wang, K. Developments and Applications of Artificial Intelligence in Music Education. Technologies 2023, 11, 42. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Xia, G.; Wang, L.; Wang, K. Self-Powered Electronic Skin for Remote Human–Machine Synchronization. ACS Appl. Electron. Mater. 2023, 5, 498–508. [Google Scholar] [CrossRef]
- Wang, W.; Yang, D.; Yan, X.; Wang, L.; Hu, H.; Wang, K. Triboelectric nanogenerators: The beginning of blue dream. Front. Chem. Sci. Eng. 2023. [Google Scholar] [CrossRef]
- Wang, W.; Yang, D.; Huang, Z.; Hu, H.; Wang, L.; Wang, K. Electrodeless Nanogenerator for Dust Recover. Energy Technol. 2022, 10, 2200699. [Google Scholar] [CrossRef]
- Wang, W.; Pang, J.; Su, J.; Li, F.; Li, Q.; Wang, X.; Wang, J.; Ibarlucea, B.; Liu, X.; Li, Y. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat 2022, 4, e12262. [Google Scholar] [CrossRef]
- Kim, J.; Kowal, J. A Method for Detecting the Existence of an Over-Discharged Cell in a Lithium-Ion Battery Pack via Measuring Total Harmonic Distortion. Batteries 2022, 8, 26. [Google Scholar] [CrossRef]
- Ko, H.; Pack, S.; Leung, V.C.M. An Optimal Battery Charging Algorithm in Electric Vehicle-Assisted Battery Swapping Environments. IEEE Trans. Intell. Transp. Syst. 2022, 23, 3985–3994. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, D.; Zhang, Y.; Wang, L.; Wang, K. Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network. Prot. Control Mod. Power Syst. 2022, 7, 40. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy 2022, 259, 124933. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Zhou, Y.-T. Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach. Complexity 2020, 2020, 8231243. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Li, D.; Cui, X.; Wang, L.; Li, L.; Wang, K. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. Energies 2023, 16, 1599. [Google Scholar] [CrossRef]
- Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies 2022, 15, 6665. [Google Scholar] [CrossRef]
- Lan, T.; Jermsittiparsert, K.; Alrashood, S.T.; Rezaei, M.; Al-Ghussain, L.; Mohamed, M.A. An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand. Energies 2021, 14, 569. [Google Scholar] [CrossRef]
- Li, A.; Yuen, A.C.Y.; Wang, W.; Chen, T.B.Y.; Lai, C.S.; Yang, W.; Wu, W.; Chan, Q.N.; Kook, S.; Yeoh, G.H. Integration of Computational Fluid Dynamics and Artificial Neural Network for Optimization Design of Battery Thermal Management System. Batteries 2022, 8, 69. [Google Scholar] [CrossRef]
- Mallon, K.; Assadian, F. A Study of Control Methodologies for the Trade-Off between Battery Aging and Energy Consumption on Electric Vehicles with Hybrid Energy Storage Systems. Energies 2022, 15, 600. [Google Scholar] [CrossRef]
- Peng, J.; Shi, H.; Wang, S.; Wang, L.; Fernandez, C.; Xiong, X.; Dablu, B.E. A novel equivalent modeling method combined with the splice-electrochemical polarization model and prior generalized inverse least-square parameter identification for UAV lithium-ion batteries. Energy Sci. Eng. 2022, 10, 3727–3740. [Google Scholar] [CrossRef]
- Shu, X.; Li, G.; Zhang, Y.; Shen, S.; Chen, Z.; Liu, Y. Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model. IEEE Trans. Transp. Electrif. 2021, 7, 1271–1284. [Google Scholar] [CrossRef]
- Shu, X.; Shen, J.; Li, G.; Zhang, Y.; Chen, Z.; Liu, Y. A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs With Long Short-Term Memory Network and Transfer Learning. IEEE Trans. Transp. Electrif. 2021, 7, 2238–2248. [Google Scholar] [CrossRef]
- Tang, X.; Gao, F.; Liu, K.; Liu, Q.; Foley, A.M. A Balancing Current Ratio Based State-of-Health Estimation Solution for Lithium-Ion Battery Pack. IEEE Trans. Ind. Electron. 2022, 69, 8055–8065. [Google Scholar] [CrossRef]
- Tran, M.-K.; Cunanan, C.; Panchal, S.; Fraser, R.; Fowler, M. Investigation of Individual Cells Replacement Concept in Lithium-Ion Battery Packs with Analysis on Economic Feasibility and Pack Design Requirements. Processes 2021, 9, 2263. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Hu, X. A Fault Diagnosis Method for Lithium-Ion Battery Packs Using Improved RBF Neural Network. Front. Energy Res. 2021, 9, 702139. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Sun, J.; Zhao, K.; Wang, L.; Song, J.; Duan, C.; Li, L. State of Charge Estimation of Composite Energy Storage Systems with Supercapacitors and Lithium Batteries. Complexity 2021, 2021, 8816250. [Google Scholar] [CrossRef]
- Wei, Z.; Quan, Z.; Wu, J.; Li, Y.; Pou, J.; Zhong, H. Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2022, 69, 2588–2598. [Google Scholar] [CrossRef]
- Yang, R.; Xiong, R.; Shen, W.; Lin, X. Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit. Engineering 2021, 7, 395–405. [Google Scholar] [CrossRef]
- Wang, L.; Xie, L.; Yang, Y.; Zhang, Y.; Wang, K.; Cheng, S.-J. Distributed Online Voltage Control with Fast PV Power Fluctuations and Imperfect Communication. IEEE Trans. Smart Grid 2023. [Google Scholar] [CrossRef]
- Ma, N.; Yang, D.; Riaz, S.; Wang, L.; Wang, K. Aging Mechanism and Models of Supercapacitors: A Review. Technologies 2023, 11, 38. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, S. Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network. Front. Energy Res. 2022, 10, 969168. [Google Scholar] [CrossRef]
- Feng, H.; Yan, H. State of health estimation of large-cycle lithium-ion batteries based on error compensation of autoregressive model. J. Energy Storage 2022, 52, 104869. [Google Scholar] [CrossRef]
- Xu, X.; Sun, X.; Zhao, L.; Li, R.; Tang, W. Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse. Ionics 2022, 28, 5449–5467. [Google Scholar] [CrossRef]
- Hsiang, H.-I.; Chen, W.-Y. Electrochemical Properties and the Adsorption of Lithium Ions in the Brine of Lithium-Ion Sieves Prepared from Spent Lithium Iron Phosphate Batteries. Sustainability 2022, 14, 16235. [Google Scholar] [CrossRef]
- Ouyang, M.; Shen, P. Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM. Energies 2022, 15, 8918. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, D.; Du, J.; Sun, H.; Li, L.; Wang, L.; Wang, K. A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms. Energies 2023, 16, 3167. [Google Scholar] [CrossRef]
- Lv, S.; Wang, X.; Lu, W.; Zhang, J.; Ni, H. The Influence of Temperature on the Capacity of Lithium Ion Batteries with Different Anodes. Energies 2022, 15, 60. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, Q.; Zhu, W.; Yi, X.; Han, X. Thermal Runaway Characteristics of 18650 NCM Lithium-ion Batteries under the Different Initial Pressures. Electrochemistry 2022, 90, 087004. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Q.; Qi, K.; Liu, Y.; Sun, J.; Wang, Z.; Wang, Q. Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan. J. Energy Storage 2022, 46, 103910. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X.; Chen, C.; Zhao, W. Remaining useful life prediction of the lithium-ion battery based on CNN-LSTM fusion model and grey relational analysis. Electron. Res. Arch. 2022, 31, 633–655. [Google Scholar] [CrossRef]
- Wang, H.; Yu, K.; Mao, L.; He, Q.; Wu, Q.; Li, Z. Evaluation of Lithium-Ion Battery Pack Capacity Consistency Using One-Dimensional Magnetic Field Scanning. IEEE Trans. Instrum. Meas. 2022, 71, 3507610. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Wang, S.-L.; Yu, C.-M.; Xie, Y.-X.; Fernandez, C. Improved Particle Swarm Optimization-Extreme Learning Machine Modeling Strategies for the Accurate Lithium-ion Battery State of Health Estimation and High-adaptability Remaining Useful Life Prediction. J. Electrochem. Soc. 2022, 169, 080520. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, B.; Yuan, X.; Wang, J.; Chen, L.; Bai, L.; Luo, S. Study on the Relationship Between Open-Circuit Voltage, Time Constant And Polarization Resistance of Lithium-Ion Batteries. J. Electrochem. Soc. 2022, 169, 060513. [Google Scholar] [CrossRef]
SOC/% | ||||
---|---|---|---|---|
Period of Discharge | B1 | B2 | B3 | B4 |
0 | 100 | 100 | 100 | 100 |
1 | 70 | 75 | 80 | 100 |
2 | 40 | 50 | 60 | 100 |
3 | 10 | 25 | 40 | 100 |
3.3 | 0 | 17 | 33 | 100 |
4 | 0 | 0 | 20 | 85 |
SOC/% | |||||
---|---|---|---|---|---|
Period of Discharge | B1 | B2 | B3 | B4 | Supply Current |
0 | 100 | 100 | 100 | 100 | B1 B2 B3 |
1 | 70 | 75 | 80 | 100 | B2 B3 B4 |
2 | 70 | 50 | 60 | 85 | B1 B3 B4 |
3 | 40 | 50 | 40 | 70 | B1 B2 B4 |
4 | 10 | 25 | 40 | 55 | B2 B3 B4 |
5 | 10 | 0 | 20 | 40 | B1 B3 B4 |
5.3 | 0 | 0 | 13 | 35 |
SOC/% | ||||
---|---|---|---|---|
t/min | B1 | B2 | B3 | B4 |
0 | 100.0 | 90.0 | 80.0 | 100.0 |
30 | 63.3 | 55.7 | 48.4 | 100.0 |
60 | 37.7 | 31.4 | 27.1 | 100.0 |
100 | 14.4 | 11.1 | 7.7 | 100.0 |
130 | 5.6 | 4.3 | 0 | 100.0 |
160 | 2.5 | 0 | 0 | 58.1 |
SOC/% | ||||
---|---|---|---|---|
t/min | B1 | B2 | B3 | B4 |
0 | 100.0 | 90.0 | 80.0 | 100.0 |
30 | 65.5 | 64.6 | 63.8 | 66.4 |
60 | 42.8 | 42.3 | 43.0 | 42.7 |
100 | 19.7 | 20.0 | 19.9 | 19.6 |
130 | 9.2 | 8.9 | 9.0 | 8.9 |
160 | 3.0 | 2.9 | 2.9 | 3.1 |
190 | 0.1 | 0 | 0 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Li, Y.; Li, X.; Wang, L.; Wang, K. Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy. Technologies 2023, 11, 60. https://doi.org/10.3390/technologies11020060
Yu X, Li Y, Li X, Wang L, Wang K. Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy. Technologies. 2023; 11(2):60. https://doi.org/10.3390/technologies11020060
Chicago/Turabian StyleYu, Xiaofei, Yanke Li, Xiaonan Li, Licheng Wang, and Kai Wang. 2023. "Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy" Technologies 11, no. 2: 60. https://doi.org/10.3390/technologies11020060
APA StyleYu, X., Li, Y., Li, X., Wang, L., & Wang, K. (2023). Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy. Technologies, 11(2), 60. https://doi.org/10.3390/technologies11020060