Data Envelopment Analysis and Multifactor Asset Pricing Models
Abstract
:1. Introduction
2. Data and Efficiency Analysis
3. Multifactor Asset Pricing Models Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Panel A | ||||||
αi | βiRMRF | βiSMB | βiHML | βiDEA | R2 | |
P1 | 0.00001 | 0.72500 | −0.03498 | −0.13344 | −0.00672 | 0.699 |
0.008 | 18.462 * | −0.362 | −1.559 | −0.904 | ||
P2 | −0.00015 | 0.68950 | 0.03730 | −0.10205 | −0.00577 | 0.709 |
−0.082 | 18.969 * | 0.417 | −1.288 | −0.840 | ||
P3 | −0.00068 | 0.73318 | −0.00146 | −0.23141 | −0.01505 | 0.729 |
−0.366 | 19.667 * | −0.015 | −2.849 * | −2.136 | ||
P4 | −0.00027 | 0.66036 | 0.02814 | −0.07859 | −0.01493 | 0.730 |
−0.159 | 19.370 * | 0.335 | −1.058 | −2.316 * | ||
P5 | −0.00028 | 0.69663 | −0.01145 | −0.09888 | −0.01045 | 0.720 |
−0.155 | 19.157 * | −0.128 | −1.248 | −1.520 | ||
P6 | −0.00018 | 0.70371 | −0.04959 | −0.11263 | −0.01544 | 0.748 |
−0.104 | 20.318 * | −0.582 | −1.492 | −2.359 * | ||
P7 | 0.00001 | 0.69221 | −0.02033 | −0.11473 | −0.01373 | 0.743 |
0.003 | 20.205 * | −0.241 | −1.537 | −2.119 * | ||
P8 | −0.00029 | 0.69893 | −0.05205 | −0.11688 | −0.01911 | 0.757 |
−0.169 | 20.608 * | −0.623 | −1.581 | −2.981 * | ||
P9 | 0.00009 | 0.68879 | −0.08391 | −0.08150 | −0.01565 | 0.742 |
0.054 | 19.869 * | −0.983 | −1.079 | −2.388 * | ||
P10 | −0.00036 | 0.72169 | −0.12809 | −0.11672 | −0.01475 | 0.749 |
−0.203 | 20.339 * | −1.467 | −1.509 | −2.199 * | ||
P11 | −0.00016 | 0.72227 | −0.10462 | −0.09785 | −0.01301 | 0.745 |
−0.091 | 20.181 * | −1.188 | −1.255 | −1.922 ** | ||
P12 | −0.00012 | 0.71936 | −0.03390 | −0.14850 | −0.02247 | 0.763 |
−0.067 | 20.862 | −0.399 | −1.976 * | −3.448 * | ||
P13 | −0.00052 | 0.72088 | −0.04617 | −0.21277 | −0.02463 | 0.755 |
−0.295 | 20.351 * | −0.529 | −2.757 * | −3.678 * | ||
P14 | −0.00005 | 0.71099 | −0.05945 | −0.14467 | −0.01921 | 0.745 |
−0.025 | 20.019 * | −0.680 | −1.869 ** | −2.861 * | ||
P15 | 0.00022 | 0.68800 | −0.08782 | −0.07565 | −0.01133 | 0.745 |
0.127 | 19.733 * | −1.023 | −0.995 | −1.719 ** | ||
P16 | −0.00001 | 0.71240 | −0.00394 | −0.11358 | −0.01885 | 0.735 |
−0.004 | 20.874 * | −0.047 | −1.527 | −2.922 * | ||
P17 | −0.00010 | 0.70986 | −0.14161 | −0.10103 | −0.01922 | 0.760 |
−0.057 | 20.603 * | −1.670 ** | −1.345 | −2.951 * | ||
P18 | −0.00068 | 0.72072 | −0.15536 | −0.15191 | −0.01856 | 0.760 |
−0.383 | 20.382 * | −1.785 ** | −1.971 | −2.777 * | ||
P19 | −0.00026 | 0.69972 | −0.16780 | −0.14017 | −0.01822 | 0.753 |
−0.152 | 20.940 * | −2.0410 * | −1.925 ** | −2.885 * | ||
P20 | −0.00034 | 0.71460 | −0.20556 | −0.16629 | −0.01597 | 0.764 |
−0.210 | 22.295 * | −2.606 * | −2.381 * | −2.636 * | ||
Panel B | ||||||
RMRF | SMB | HML | DEA | |||
RM−RF | 1 | −0.098 | 0.288 | −0.294 | ||
SMB | 1.000 | 0.048 | −0.071 | |||
HML | 1.000 | 0.114 | ||||
DEA | 1 |
αi | βiRMRF | βiSMB | βiHML | R2 | |
---|---|---|---|---|---|
P1 | 0.00013 | 0.73767 | −0.02400 | −0.15109 | 0.698 |
0.064 | 20.1171 * | −0.250 | −1.814 ** | ||
P2 | −0.00005 | 0.70039 | 0.04674 | −0.11722 | 0.708 |
−0.030 | 20.6417 * | 0.527 | −1.521 | ||
P3 | −0.00044 | 0.76157 | 0.02316 | −0.27095 | 0.722 |
−0.232 | 21.6597 * | 0.252 | −3.3939 * | ||
P4 | −0.00003 | 0.68852 | 0.05255 | −0.11780 | 0.722 |
−0.016 | 21.3683 * | 0.624 | −1.610 | ||
P5 | −0.00011 | 0.71635 | 0.00564 | −0.12634 | 0.716 |
−0.061 | 21.0124 * | 0.063 | −1.632 | ||
P6 | 0.00007 | 0.73284 | −0.02434 | −0.15320 | 0.740 |
0.041 | 22.3759 * | −0.284 | −2.0601 * | ||
P7 | 0.00023 | 0.71810 | 0.00212 | −0.15079 | 0.737 |
0.134 | 22.2287 * | 0.025 | −2.0557 * | ||
P8 | 0.00003 | 0.73499 | −0.02080 | −0.16710 | 0.745 |
0.015 | 22.7194 * | −0.246 | −2.2748 * | ||
P9 | 0.00035 | 0.71832 | −0.05832 | −0.12262 | 0.734 |
0.200 | 21.9044 * | −0.681 | −1.647 | ||
P10 | −0.00012 | 0.74952 | −0.10397 | −0.15548 | 0.743 |
−0.066 | 22.3809 * | −1.188 | −2.0447 * | ||
P11 | 0.00005 | 0.74680 | −0.08335 | −0.13202 | 0.740 |
0.028 | 22.1758 * | −0.947 | −1.7265 ** | ||
P12 | 0.00025 | 0.76175 | 0.00285 | −0.20753 | 0.748 |
0.142 | 22.9835 * | 0.033 | −2.7578 * | ||
P13 | −0.00012 | 0.76735 | −0.00590 | −0.27747 | 0.737 |
−0.066 | 22.4433 * | −0.066 | −3.5742 * | ||
P14 | 0.00027 | 0.74723 | −0.02803 | −0.19514 | 0.734 |
0.149 | 22.0979 * | −0.317 | −2.5416 * | ||
P15 | 0.00041 | 0.70938 | −0.06928 | −0.10543 | 0.731 |
0.234 | 21.6647 * | −0.810 | −1.418 | ||
P16 | 0.00030 | 0.74796 | 0.02689 | −0.16310 | 0.749 |
0.174 | 22.9976 * | 0.316 | −2.2087 * | ||
P17 | 0.00022 | 0.74611 | −0.11018 | −0.15152 | 0.749 |
0.123 | 22.7135 * | −1.284 | −2.0314 * | ||
P18 | −0.00037 | 0.75574 | −0.12501 | −0.20067 | 0.743 |
−0.208 | 22.4747 * | −1.423 | −2.6282 * | ||
P19 | 0.00004 | 0.73410 | −0.13801 | −0.18804 | 0.754 |
0.025 | 23.0654 * | −1.6590 ** | −2.6021 * | ||
P20 | −0.00008 | 0.74473 | −0.17945 | −0.20825 | 0.776 |
−0.047 | 24.4820 * | −2.2578 * | −3.0151 * |
References
- Abdelsalam, Omneya, Meryem Duygun Fethi, Juan Carlos Matallín, and Emili Tortosa-Ausina. 2014. On the Comparative Performance of Socially Responsible and Islamic Mutual Funds. Journal of Economic Behavior and Organization 7: 108–28. [Google Scholar] [CrossRef] [Green Version]
- Adler, Nicole, and Boaz Golany. 2002. Including Principal Component Weights to Improve Discrimination in Data Envelopment Analysis. Journal of the Operational Research Society 53: 985–91. [Google Scholar] [CrossRef]
- Ammann, Manuel, Sandro Odoni, and David Oesch. 2012. An Alternative Three-factor Model for International Markets: Evidence from the European Monetary Union. Journal of Banking and Finance 36: 1857–64. [Google Scholar] [CrossRef] [Green Version]
- Andreu, Laura, Miguel Serrano, and Luis Vicente. 2018. Efficiency of mutual fund managers: A slacks-based manager efficiency index. European Journal of Operational Research 273: 1180–93. [Google Scholar] [CrossRef] [Green Version]
- Babalos, Vassilios, Michael Doumpos, Nikolaos Philippas, and Constantin Zopounidis. 2015. Towards a Holistic Approach for Mutual Fund Performance Appraisal. Computational Economics 46: 35–53. [Google Scholar] [CrossRef]
- Banker, Rajiv D., Abraham Charnes, and William W. Cooper. 1984. Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30: 1078–92. [Google Scholar] [CrossRef] [Green Version]
- Basso, Antonella, and Stefania Funari. 2001. A Data Envelopment Analysis Approach to Measure the Mutual Fund Performance. European Journal of Operational Research 135: 477–92. [Google Scholar] [CrossRef]
- Basso, Antonella, and Stefania Funari. 2003. Measuring the Performance of Ethical Mutual Funds: A DEA Approach. Journal of the Operational Research Society 54: 521–31. [Google Scholar] [CrossRef]
- Basso, Antonella, and Stefania Funari. 2005. A Generalized Performance Attribution Technique for Mutual Funds. Central European Journal of Operations Research 13: 65–84. [Google Scholar]
- Basso, Antonella, and Stefania Funari. 2007. DEA Models for Ethical and non Ethical Mutual Funds with Negative Data. Mathematics and Methods in Economics Finance 2: 21–40. [Google Scholar]
- Basso, Antonella, and Stefania Funari. 2016. DEA Performance Assessment of Mutual Funds in Data Envelopment Analysis. In A Handbook of Empirical Studies and Applications. Edited by Joe Zhu. New York: Springer, pp. 229–88. [Google Scholar]
- Berk, Jonathan B., and Richard C. Green. 2004. Mutual Fund Flows and Performance in Rational Markets. Journal of Political Economy 112: 1269–95. [Google Scholar] [CrossRef]
- Breeden, Douglas T. 1979. An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities. Journal of Financial Economics 7: 265–96. [Google Scholar] [CrossRef]
- Campbell, John Y., and Robert J. Shiller. 1988. The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. Review of Financial Studies 1: 195–227. [Google Scholar] [CrossRef] [Green Version]
- Cao, Zhiguang, Stephen Satchell, P. Joakim Westerholm, and Hui Henry Zhang. 2018. The Idiosyncratic Volatility Anomaly and the Resale Option in Chinese Stock Markets. Available online: https://ssrn.com/abstract=3274652 (accessed on 3 April 2020).
- Carhart, Mark. M. 1997. On Persistence in Mutual Fund Performance. Journal of Finance 52: 57–82. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edward Rhodes. 1981. Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through. Managerial Science 27: 668–97. [Google Scholar] [CrossRef]
- Chen, Long, Robert Novy-Marx, and Lu Zhang. 2011. An Alternative Three-Factor Model. Available online: https://ssrn.com/abstract=1418117 (accessed on 28 June 2019).
- Chordia, Tarun, Avanidhar Subrahmanyam, and Qing Tong. 2014. Have capital market anomalies attenuated in the recent era of high liquidity and trading activity? Journal of Accounting and Economics 58: 41–58. [Google Scholar] [CrossRef]
- Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam. 2011. Recent trends in trading activity and market quality. Journal of Financial Economics 101: 243–63. [Google Scholar] [CrossRef] [Green Version]
- Clarke, Charles. 2014. The Level, Slope and Curve Factor Model for Stocks. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2526435 (accessed on 17 November 2018).
- Cochrane, John H. 2011. Presidential Address: Discount Rates. Journal of Finance 66: 1047–1108. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, John. H. 2005. Asset Pricing, Revised ed. Princeton: Princeton University Press. [Google Scholar]
- Cornish, Edmund A., and Ronald A. Fisher. 1937. Moments and Cumulants in the Specification of Distributions. Review of the International Statistical Institute 4: 307–20. [Google Scholar] [CrossRef] [Green Version]
- Durán-Santomil, Pablo, Luis Otero-González, Renato Heitor Correia-Domingues, and Juan Carlos Reboredo. 2019. Does Sustainability Score Impact Mutual Fund Performance? Sustainability 11: 2972. [Google Scholar] [CrossRef] [Green Version]
- Eling, Martin. 2006. Performance Measurement of Hedge Funds using Data Envelopment Analysis. Financial Markets and Porfolio Management 20: 442–71. [Google Scholar] [CrossRef] [Green Version]
- Favre, Laurent, and José-Antonio Galeano. 2002. Mean-Modified Value-at-Risk Optimization with Hedge Funds. Journal of Alternative Investments 5: 21–25. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 2015. A Five-Factor Asset Pricing Model. Journal of Financial Economics 116: 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fama, Eugene F., and Kenneth R. French. 2016. Dissecting Anomalies with a Five-Factor Model. Review of Financial Studies 29: 69–103. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fecher, Fabienne, D. Kessler, Sergio Perelman, and Pierre Pestieau. 1993. Productive performance of the French insurance industry. Journal of Productivity Analysis 4: 77–93. [Google Scholar] [CrossRef]
- Feng, Guanhao, Stefano Giglio, and Dacheng Xiu. 2019. Taming the Factor Zoo A Test of New Factors. Fama-Miller Working Paper. Chicago Booth Research Paper No. 17(4). Chicago, IL, USA: Chicago Booth School of Business, pp. 1–56. [Google Scholar]
- Galagedera, Don Upatissa Asoka, and Param Silvapulle. 2002. Australian Mutual Fund Performance Appraisal using Data Envelopment Analysis. Managerial Finance 28: 60–73. [Google Scholar] [CrossRef]
- Gibbons, Michael. R., Stephen A. Ross, and Jay Shanken. 1989. A Test of the Efficiency of a Given Portfolio. Econometrica 57: 1121–52. [Google Scholar] [CrossRef] [Green Version]
- Glawischnig, Markus, and Margit Sommersguter-Reichmann. 2010. Assessing the Performance of Alternative Investments using Non-parametric Efficiency Measurement Approaches: Is it convincing? Journal of Banking and Finance 34: 295–303. [Google Scholar] [CrossRef]
- Gökgöz, Fazil, and Duygu Çandarli. 2011. Data Envelopment Analysis: A Comparative Efficiency Measurement for Turkish Pension and Mutual Funds. International Journal of Economic Perspectives 5: 261–81. [Google Scholar]
- Gregoriou, Greg N., and Jean Pierre Gueyie. 2003. Risk-Adjusted Performance of Funds of Hedge Funds using a Modified Sharpe Ratio. Journal of Wealth Management 6: 77–83. [Google Scholar] [CrossRef]
- Gregoriou, Greg. N., Komlan Sedzro, and Joe Zhu. 2005. Hedge Fund Performance Appraisal using Data Envelopment Analysis. European Journal of Operational Research 164: 555–71. [Google Scholar] [CrossRef]
- Guillén, Jorge. 2011. Latin American Private Pension Funds’ Vulnerabilities. Economía Mexicana 20: 357–78. [Google Scholar]
- Harvey, Campbell. R., Yan Liu, and Heqing Zhu. 2016. …and the Cross-Section of Expected Returns. Review of Financial Studies 29: 5–68. [Google Scholar] [CrossRef] [Green Version]
- Kapur, Sandeep, and Allan Timmermann. 2005. Relative Performance Evaluation Contracts and Asset Market Equilibrium. Economic Journal 115: 1077–102. [Google Scholar] [CrossRef] [Green Version]
- Lettau, Martin, and Sydney Ludvigson. 2001a. Consumption, Aggregate Wealth, and Expected Stock Returns. Journal of Finance 56: 815–49. [Google Scholar] [CrossRef] [Green Version]
- Lettau, Martin, and Sydney Ludvigson. 2001b. Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying. Journal of Political Economy 109: 1238–87. [Google Scholar] [CrossRef] [Green Version]
- Lewellen, Jonathan, Stefan Nagel, and Jay Shanken. 2010. A Skeptical Appraisal of Asset-Pricing Tests. Journal of Financial Economics 96: 175–94. [Google Scholar] [CrossRef] [Green Version]
- Lovell, C. A. Knox. 1993. Production Frontiers and Productive Efficiency. In Measurement of Productive Efficiency: Techniques and Applications. Edited by Harold O. Fried, C. A. Knox Lovell and Shelton S. Schmidt. New York: Oxford University Press, pp. 3–67. [Google Scholar]
- McLean, R. David, and Jeffrey Pontiff. 2016. Does academic research destroy stock return predictability? Journal of Finance 71: 5–32. [Google Scholar] [CrossRef]
- McMullen, Patrick, and Robert Strong. 1998. Selection of Mutual Funds using Data Envelopment Analysis. Journal of Business and Economics Studies 4: 1–12. [Google Scholar]
- Morey, Mattew R., and Richard C. Morey. 1999. Mutual Fund Performance Appraisals: A Multi-horizon Perspective with Endogenous Benchmarking. Omega 27: 241–58. [Google Scholar] [CrossRef]
- Murthi, B. P. S., Yoon K. Choi, and Preyas Desai. 1997. Efficiency of Mutual Funds and Portfolio Performance Measurement: A Non-parametric Approach. European Journal of Operational Research 98: 408–18. [Google Scholar] [CrossRef]
- Parkan, Celik. 1991. The Calculation of Operational Performance Ratings. International Journal of Production Economics 24: 165–73. [Google Scholar] [CrossRef]
- Pätäri, Eero, Timo Leivo, and Samuli Honkapuro. 2012. Enhancement of Equity Portfolio Performance Using Data Envelopment Analysis. European Journal of Operational Research 220: 786–97. [Google Scholar] [CrossRef]
- Pérez-Gladish, Blanca, Paz Méndez Rodríguez, Bouchra M’zali, and Pascal Lang. 2013. Mutual Funds Efficiency Measurement under Financial and Social Responsibility Criteria. Journal of Multi-Criteria Decision Analysis 20: 109–25. [Google Scholar] [CrossRef]
- Premachandra, I. M. 2001. A Note on DEA vs Principal Component Analysis: An Improvement to Joe Zhu’s Approach. European Journal of Operational Research 132: 553–60. [Google Scholar] [CrossRef]
- Premachandra, I. M., Joe Zhu, John Watson, and Don Upatissa Asoka Galagedera. 2016. Mutual Fund Industry Performance: A Network Data Envelopment Analysis Approach. In Data Envelopment Analysis. International Series in Operations Research & Management Science. Edited by Joe Zhu. Boston: Springer, vol. 238, pp. 165–228. [Google Scholar]
- Premachandra, I. M., Joe Zhu, John Watson, and Don Upatissa Asoka Galagedera. 2012. Best-performing US Mutual Fund Families from 1993 to 2008: Evidence from a Novel two-stage DEA model for Efficiency Decomposition. Journal of Banking and Finance 36: 3302–17. [Google Scholar] [CrossRef]
- Roll, Richard. 1977. A Critique of the Asset Pricing Theory’s Tests Part I: On Past and Potential Testability of the Theory. Journal of Financial Economics 4: 129–76. [Google Scholar] [CrossRef]
- Rubio, J. Francisco, Neal Maroney, and M. Kabir Hassan. 2018. Can Efficiency of Returns Be Considered As a Pricing Factor? Computational Economics 52: 25–54. [Google Scholar] [CrossRef]
- Serrano Cinca, Carlos, and Cecilio Mar Molinero. 2004. Selecting DEA Specifications and Ranking Units Via PCA. Journal of the Operational Research Society 55: 521–28. [Google Scholar] [CrossRef] [Green Version]
- Sherman, H. David, and Franklin Gold. 1985. Bank branch operating efficiency: Evaluation with Data Envelopment Analysis. Journal of Banking & Finance 9: 297–315. [Google Scholar]
- Vidal-Garcia, Javier, Marta Vidal, Sabri Boubaker, and Majdi Hassan. 2018. The Efficiency of Mutal Funds. Annals of Operation Research 267: 555–84. [Google Scholar] [CrossRef]
- Wilkens, Kathryn, and Joe Zhu. 2001. Portfolio Evaluation and Benchmark Selection: A Mathematical Programming Approach. Journal of Alternative Investments 4: 9–19. [Google Scholar] [CrossRef]
- Zhao, Xiujuan, and Wuyi Yue. 2010. A Multi-subsystem Fuzzy DEA Model with its Application in Mutual Funds Management Companies’ Competence Evaluation. In International Conference on Computer Science. Amsterdam: Elsevier, pp. 2479–88. [Google Scholar]
- Zhao, Xiujuan, Shouyang Wang, and King Keung Lai. 2011. Mutual Funds Performance Evaluation based on Endogenous Benchmarks. Expert Systems with Applications 38: 3663–70. [Google Scholar] [CrossRef]
- Zhu, Joe. 1998. Data Envelopment Analysis vs. Principal Component Analysis: An Illustrative Study of Economic Performance of Chinese Cities. European Journal of Operational Research 111: 50–61. [Google Scholar] [CrossRef]
1 | All data is publicly available at dx.doi.org/10.17632/2xh658swv4.2. |
2 | All data is publicly available at dx.doi.org/10.17632/2xh658swv4.2. |
3 | All results are publicly available at dx.doi.org/10.17632/2xh658swv4.2. |
4 | All data is publicly available at dx.doi.org/10.17632/2xh658swv4.2. |
Panel A: | Returns | |||||
Average | SD | Max | Min | Skewness | Kurtosis | |
0.363 | 4.814 | 44.284 | −44.543 | −0.633 | 2.156 | |
Panel B: | Volume (€ Mill.) | |||||
Average | STD | |||||
547,100 | 689,962 |
Inputs | |
Risk measures | Standard deviation (SD) |
Lower partial moments order 1 (LPM1) | |
Lower partial moments order 2 (LPM2) | |
Lower partial moments order 3 (LPM3) | |
Value at risk (VaR) | |
Conditional value at risk (CVaR) | |
Modified value at risk (MVaR) | |
Kurtosis (K) | |
Outputs | |
Return measures | Average return (Rme) |
Maximum return (Rmax) | |
Minimum return (Rmin) | |
Higher partial moments order 1 (HPM2) | |
Higher partial moments order 2 (HPM3) | |
Higher partial moments order 3 (HPM4) | |
Skewness (S) |
Input | Component 1 | Component 2 | Output | Component 1 | Component 2 |
---|---|---|---|---|---|
SD | 0.9689 | 0.0338 | Average Return | 0.5481 | −0.0210 |
VaR 95% | 0.8787 | 0.0568 | Rmax | 0.6882 | 0.4594 |
CVaR 95% | 0.9866 | 0.0223 | Rmin | −0.7217 | 0.3729 |
MVaR 95% | 0.0152 | 0.9970 | Skewness | −0.0225 | 0.9818 |
LPM 1 | 0.9813 | 0.0267 | HPM 1 | 0.9807 | 0.0536 |
LPM 2 | 0.9930 | 0.0359 | HPM 2 | 0.9782 | 0.0531 |
LPM 3 | 0.9892 | 0.0384 | HPM 3 | 0.9767 | 0.0529 |
Kurtosis | 0.4210 | −0.0594 | |||
Explained variance | 72.47% | 84.94% | Explained variance | 59.65% | 78.41% |
Portfolio | Mean Return | SD | Skewness | Kurtosis | Jarque–Bera |
---|---|---|---|---|---|
P1 (Small) | 0.251 | 4.781 | −0.719 | 1.462 | 35.400 |
P2 | 0.247 | 4.504 | −0.832 | 1.519 | 42.707 |
P3 | 0.170 | 4.783 | −0.845 | 1.491 | 42.744 |
P4 | 0.246 | 4.782 | −0.831 | 1.404 | 39.867 |
P5 | 0.235 | 4.587 | −0.800 | 1.298 | 35.712 |
P6 | 0.243 | 4.609 | −0.760 | 1.204 | 31.652 |
P7 | 0.260 | 4.518 | −0.783 | 1.079 | 30.467 |
P8 | 0.235 | 4.598 | −0.698 | 1.223 | 28.999 |
P9 | 0.269 | 4.562 | −0.715 | 1.275 | 30.867 |
P10 | 0.211 | 4.733 | −0.692 | 1.321 | 30.801 |
P11 | 0.241 | 4.731 | −0.697 | 1.274 | 30.023 |
P12 | 0.258 | 4.733 | −0.669 | 1.133 | 25.882 |
P13 | 0.194 | 4.600 | −0.733 | 1.109 | 28.431 |
P14 | 0.252 | 4.700 | −0.732 | 1.051 | 27.323 |
P15 | 0.275 | 4.528 | −0.744 | 1.260 | 31.983 |
P16 | 0.280 | 4.659 | −0.717 | 1.425 | 34.373 |
P17 | 0.244 | 4.697 | −0.695 | 1.034 | 25.235 |
P18 | 0.166 | 4.555 | −0.693 | 1.092 | 26.201 |
P19 | 0.201 | 4.397 | −0.664 | 1.142 | 25.821 |
P20 (Big) | 0.176 | 4.605 | −0.687 | 1.039 | 24.961 |
Portfolios | Average Score | Mean Return |
---|---|---|
P1 (Small) | 1.000 | 0.251 |
P2 | 0.964 | 0.247 |
P3 | 0.963 | 0.170 |
P4 | 0.934 | 0.246 |
P5 | 0.917 | 0.235 |
P6 | 0.917 | 0.243 |
P7 | 0.913 | 0.260 |
P8 | 0.900 | 0.235 |
P9 | 0.924 | 0.269 |
P10 | 0.887 | 0.211 |
P11 | 0.875 | 0.241 |
P12 | 0.876 | 0.258 |
P13 | 0.888 | 0.194 |
P14 | 0.895 | 0.252 |
P15 | 0.874 | 0.275 |
P16 | 0.891 | 0.280 |
P17 | 0.884 | 0.244 |
P18 | 0.947 | 0.166 |
P19 | 0.884 | 0.201 |
P20 (Big) | 0.808 | 0.176 |
Average | 0.907 | 0.233 |
P1-P20 spread | 0.192 | 0.075 |
Panel A | ||||||||||
γ0 | γ1 | γ2 | γ3 | γ4 | GRS | J-test | R2 | R2Adj | ||
Estimate | −0.0014 | 0.0066 | 0.0028 | 0.0085 | −0.0194 | 7.222 | 6.698 | OLS | 0.761 | 0.682 |
(0.0037) | (0.0069) | (0.0028) | (0.0041) | (0.0362) | (0.031) | (0.035) | GLS | 0.708 | 0.611 | |
t-statistic | −0.3804 | 0.9595 | 1.0010 | 2.0916 | −0.5366 | |||||
Panel B | ||||||||||
Estimate | −0.0024 | 0.0083 | 0.0027 | 0.0076 | 7.980 | 7.057 | OLS | 0.695 | 0.619 | |
(0.0040) | (0.0068) | (0.0029) | (0.0033) | (0.033) | (0.028) | GLS | 0.594 | 0.493 | ||
t-statistic | −0.6299 | 1.2241 | 0.9459 | 2.3253 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano-Taborga, P.; Alonso-Conde, A.B.; Rojo-Suárez, J. Data Envelopment Analysis and Multifactor Asset Pricing Models. Int. J. Financial Stud. 2020, 8, 24. https://doi.org/10.3390/ijfs8020024
Solórzano-Taborga P, Alonso-Conde AB, Rojo-Suárez J. Data Envelopment Analysis and Multifactor Asset Pricing Models. International Journal of Financial Studies. 2020; 8(2):24. https://doi.org/10.3390/ijfs8020024
Chicago/Turabian StyleSolórzano-Taborga, Pablo, Ana Belén Alonso-Conde, and Javier Rojo-Suárez. 2020. "Data Envelopment Analysis and Multifactor Asset Pricing Models" International Journal of Financial Studies 8, no. 2: 24. https://doi.org/10.3390/ijfs8020024
APA StyleSolórzano-Taborga, P., Alonso-Conde, A. B., & Rojo-Suárez, J. (2020). Data Envelopment Analysis and Multifactor Asset Pricing Models. International Journal of Financial Studies, 8(2), 24. https://doi.org/10.3390/ijfs8020024