Is the ESG Score Part of the Set of Information Available to Investors? A Conditional Version of the Green Capital Asset Pricing Model
Abstract
1. Introduction
2. Methodology
3. Variables and Data
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMEX | American Stock Exchange |
BE/ME | Book Equity to Market Equity |
CAPM | capital asset pricing model |
CMA | Conservative Minus Aggressive |
CRSP SIC | Center for Research in Security Prices |
CSR | corporate social responsibility |
ESG | environmental, social, and governance |
GLS | generalized least squares |
GMM | generalized method of moments |
GSIA | Global Sustainable Investment Alliance |
HML | high minus low |
LT Rev | long-term reversal |
MAE | mean absolute error |
NASDAQ | National Association of Securities Dealers Automated Quotations |
NYSE | New York Stock Exchange |
OLS | ordinary least squares |
OP | operating profitability |
RM | market return |
RF | risk-free rate |
RMW | Robust Minus Weak |
SIC | Standard Industrial Classification |
SMB | small minus big |
Appendix A
Panel A: 24 composite portfolios | |||||||||||
Low | 2 | High | Low | 2 | High | ||||||
Correlations with ∆ESG | Correlations with RMRF | ||||||||||
Small–BE/ME | 1.4 | 2.21 | 2.24 | Small–BE/ME | 89.76 | 91.44 | 86.09 | ||||
Big–BE/ME | 1.85 | 5.05 | 3.21 | Big–BE/ME | 97.5 | 96.06 | 89.52 | ||||
Small–OP | 2.57 | 1.31 | 2.04 | Small–OP | 89.8 | 89.35 | 89.41 | ||||
Big–OP | 0.48 | 3.73 | 3.13 | Big–OP | 95.64 | 98.52 | 97.63 | ||||
Small–ST Rev. | 1.53 | 2.79 | 2.63 | Small–ST Rev. | 90.04 | 91.1 | 89.42 | ||||
Big–ST Rev. | 3.14 | 3.47 | −1.95 | Big–ST Rev. | 93.81 | 98.3 | 93.17 | ||||
Small–LT Rev. | 3.63 | 1.76 | 0.78 | Small–LT Rev. | 87.77 | 89.92 | 92.32 | ||||
Big–LT Rev. | 2.79 | 4.71 | 3.04 | Big–LT Rev. | 88.85 | 95.93 | 95.69 | ||||
Correlations with SMB | Correlations with HML | ||||||||||
Small–BE/ME | 64.8 | 67.64 | 68.96 | Small–BE/ME | 4.16 | 29.96 | 49.45 | ||||
Big–BE/ME | 22.62 | 37.92 | 40.72 | Big–BE/ME | −3.37 | 31.56 | 52.16 | ||||
Small–OP | 67.16 | 67.95 | 65.98 | Small–OP | 16.71 | 37.58 | 33.39 | ||||
Big–OP | 39.46 | 32.86 | 22.54 | Big–OP | 18.06 | 20.64 | 5.69 | ||||
Small–ST Rev. | 64.82 | 67.06 | 66.79 | Small–ST Rev. | 24.44 | 32.35 | 22.38 | ||||
Big–ST Rev. | 35.32 | 29.89 | 27.35 | Big–ST Rev. | 19.93 | 14.09 | 10.07 | ||||
Small–LT Rev. | 69.01 | 66.35 | 62.95 | Small–LT Rev. | 37.62 | 36.57 | 21.11 | ||||
Big–LT Rev. | 41.71 | 32.19 | 24.54 | Big–LT Rev. | 41.08 | 31.67 | -4.01 | ||||
Panel B: 25 size–momentum portfolios | |||||||||||
Low | 2 | 3 | 4 | High | Low | 2 | 3 | 4 | High | ||
Correlations with ∆ESG | Correlations with RMRF | ||||||||||
Small | 4.55 | 2.08 | 1.42 | 1.48 | 1.93 | Small | 84.23 | 86.82 | 86.59 | 83.55 | 82.26 |
2 | 2.18 | 2.57 | 0.68 | 3.28 | 2.74 | 2 | 86.73 | 89.7 | 88.54 | 87.45 | 84.97 |
3 | 2.51 | 1.9 | 2.12 | 2.01 | 0.56 | 3 | 86.23 | 91.79 | 92.21 | 90.7 | 87.57 |
4 | 2.77 | 5.08 | 4.32 | 3.99 | 3.94 | 4 | 85.72 | 93.09 | 95 | 94.35 | 86.58 |
Big | 0.59 | -0.68 | 3.73 | 6.79 | 3.97 | Big | 84.62 | 90.99 | 95.11 | 93.13 | 85.39 |
Correlations with SMB | Correlations with HML | ||||||||||
Small | 63.56 | 69.18 | 69.26 | 70.63 | 70.14 | Small | 24.13 | 33.67 | 37.88 | 35.87 | 22.2 |
2 | 59.2 | 63.92 | 67.47 | 68.38 | 67.58 | 2 | 25.53 | 31.31 | 33.95 | 32.71 | 20.42 |
3 | 52.11 | 55.59 | 58.68 | 61.74 | 59.97 | 3 | 24.79 | 30.03 | 31.37 | 30.51 | 12.22 |
4 | 45.05 | 46.65 | 48.59 | 46.66 | 48.01 | 4 | 29.18 | 27.02 | 26.8 | 20.36 | 7.92 |
Big | 30.42 | 29.56 | 27 | 27.44 | 29.19 | Big | 26.07 | 25.88 | 22.43 | 13.67 | −1.56 |
Panel C: 32 size–BE/ME–operating profitability | |||||||||||
Correlations with ∆ESG | |||||||||||
Small | Big | ||||||||||
BE/ME | Low | 2 | 3 | High | BE/ME | Low | 2 | 3 | High | ||
Small–OP | 1.27 | 2.54 | 1.45 | 1.82 | Small–OP | −2.41 | 1.81 | −0.55 | 1.45 | ||
2 | 5.18 | 2.6 | −0.27 | 1.26 | 2 | 2.96 | 4.82 | 9.53 | −1.5 | ||
3 | 6 | 1.99 | 2.47 | 3.02 | 3 | 2.09 | 4.53 | 8.95 | 8.14 | ||
Big–OP | 1.63 | 2.34 | −0.35 | 3.02 | Big–OP | 2.49 | 4.72 | 1.2 | 2.81 | ||
Correlations with RMRF | |||||||||||
Small | Big | ||||||||||
BE/ME | Low | 2 | 3 | High | BE/ME | Low | 2 | 3 | High | ||
Small–OP | 81.1 | 87.99 | 90.63 | 90.53 | Small–OP | 79.85 | 81.66 | 85.45 | 94.91 | ||
2 | 85.55 | 89.51 | 87.72 | 85.86 | 2 | 87.18 | 92.22 | 92.97 | 86.08 | ||
3 | 86.37 | 83.9 | 82.95 | 76.49 | 3 | 92.54 | 90.58 | 88.18 | 80.83 | ||
Big–OP | 84.45 | 81.27 | 69.13 | 75.8 | Big–OP | 89.96 | 84.24 | 82.68 | 57.81 | ||
Correlations with SMB | |||||||||||
Small | Big | ||||||||||
BE/ME | Low | 2 | 3 | High | BE/ME | Low | 2 | 3 | High | ||
Small–OP | 60.11 | 60.32 | 62.01 | 64.53 | Small–OP | 31.92 | 21.86 | 18.33 | 18.37 | ||
2 | 63.04 | 64.93 | 65.6 | 65.92 | 2 | 34.57 | 29.99 | 23.91 | 31.17 | ||
3 | 66.96 | 67.62 | 66.78 | 64.35 | 3 | 38.79 | 32.02 | 38.75 | 35.24 | ||
Big–OP | 64.42 | 64.83 | 59.52 | 59.07 | Big–OP | 37.6 | 41.61 | 44.87 | 33.13 | ||
Correlations with HML | |||||||||||
Small | Big | ||||||||||
BE/ME | Low | 2 | 3 | High | BE/ME | Low | 2 | 3 | High | ||
Small–OP | −8.46 | 7.42 | 16.83 | 27.49 | Small–OP | −21.28 | −20.06 | −13.89 | −1.48 | ||
2 | 9.41 | 28.99 | 37.24 | 36.38 | 2 | −2.53 | 11.05 | 16.48 | 18.25 | ||
3 | 28.53 | 48.61 | 49.01 | 49.66 | 3 | 21.17 | 31.75 | 38.51 | 29.14 | ||
Big–OP | 44.75 | 55.86 | 43.34 | 40.75 | Big–OP | 46.55 | 54.89 | 46.78 | 20.21 | ||
Panel D: 38 Industry Portfolios | |||||||||||
Correlations with ∆ESG | Correlations with RMRF | ||||||||||
Agric | Mines | Oil | Stone | Cnstr | Agric | Mines | Oil | Stone | Cnstr | ||
4.34 | 7.28 | 7.4 | 3.69 | 2.59 | 57.03 | 57.83 | 62.63 | 68.58 | 79.08 | ||
Food | Smoke | Txtls | Apprl | Wood | Food | Smoke | Txtls | Apprl | Wood | ||
1.72 | 5.6 | 11.11 | 5.82 | 2.14 | 69.34 | 44.77 | 72.03 | 81.54 | 77.06 | ||
Chair | Paper | Chems | Ptrlm | Chair | Paper | Chems | Ptrlm | ||||
0.65 | 8.91 | 3.31 | 7.05 | 8.19 | 82.19 | 78 | 83.34 | 81.94 | 63.8 | ||
Rubbr | Lethr | Glass | Metal | MtlPr | Rubbr | Lethr | Glass | Metal | MtlPr | ||
6.2 | 5.95 | 1.62 | 1.35 | −0.42 | 76.66 | 67.19 | 79.68 | 80.62 | 88.98 | ||
Machn | Elctr | Cars | Instr | Manuf | Machn | Elctr | Cars | Instr | Manuf | ||
2.05 | −0.91 | −5.12 | 4.32 | 6.97 | 89.64 | 84.31 | 84.98 | 89.08 | 74.04 | ||
Trans | Phone | TV | Utils | Garbg | Trans | Phone | TV | Utils | Garbg | ||
2.06 | 5.67 | 4.79 | 7.27 | −2.66 | 83.97 | 62.14 | 85.19 | 60.76 | 68.03 | ||
Steam | Water | Whlsl | Rtail | Money | Steam | Water | Whlsl | Rtail | Money | ||
NA | NA | 1.92 | 8.16 | 1.37 | NA | NA | 89.15 | 85.27 | 89.01 | ||
Srvc | Govt | Other | Srvc | Govt | Other | ||||||
0.45 | -0.35 | 6.35 | 92.95 | 74.47 | 78.85 | ||||||
Correlations with SMB | Correlations with HML | ||||||||||
Agric | Mines | Oil | Stone | Cnstr | Agric | Mines | Oil | Stone | Cnstr | ||
26.88 | 27.18 | 43.35 | 39.41 | 50.33 | 13.42 | 15.55 | 41.63 | 21.67 | 25.45 | ||
Food | Smoke | Txtls | Apprl | Wood | Food | Smoke | Txtls | Apprl | Wood | ||
8.27 | −1.64 | 50.3 | 44.43 | 44.68 | 18.21 | 20.17 | 35.67 | 20.59 | 23.36 | ||
Chair | Paper | Chems | Ptrlm | Chair | Paper | Chems | Ptrlm | ||||
51.08 | 29.57 | 46.63 | 15.59 | 29.66 | 35.89 | 24.48 | 30.25 | 1.82 | 38.29 | ||
Rubbr | Lethr | Glass | Metal | MtlPr | Rubbr | Lethr | Glass | Metal | MtlPr | ||
31.21 | 45.98 | 50.38 | 42.33 | 47.01 | 11.2 | 26.92 | 32.8 | 26.15 | 21.87 | ||
Machn | Elctr | Cars | Instr | Manuf | Machn | Elctr | Cars | Instr | Manuf | ||
37.63 | 27.49 | 38.62 | 37.59 | 42.7 | 13.03 | −4.81 | 16.01 | 4.06 | 19.81 | ||
Trans | Phone | TV | Utils | Garbg | Trans | Phone | TV | Utils | Garbg | ||
39.78 | 5.17 | 30.6 | 11.74 | 20.76 | 23.14 | 9.06 | 18.12 | 13.13 | 8.71 | ||
Steam | Water | Whlsl | Rtail | Money | Steam | Water | Whlsl | Rtail | Money | ||
NA | NA | 47.57 | 29.32 | 37.99 | NA | NA | 24.37 | 0.47 | 43.99 | ||
Srvc | Govt | Other | Srvc | Govt | Other | ||||||
29.18 | 14.23 | 28.33 | −5.63 | 34.18 | 15.54 |
References
- Abbassi, W., Kumari, V., & Pandey, D. K. (2022). What makes firms vulnerable to the Russia–Ukraine crisis? The Journal of Risk Finance, ahead-of-print. [Google Scholar] [CrossRef]
- Adekoya, O. B., Asl, M. G., Oliyide, J. A., & Izadi, P. (2023). Multifractality and cross-correlation between the crude oil and the European and non-European stock markets during the Russia-Ukraine war. Resources Policy, 80, 103134. [Google Scholar] [CrossRef]
- Aharon, D. Y., Aziz, M. I. A., & Kallir, I. (2023). Oil price shocks and inflation: A cross-national examination in the ASEAN5+ 3 countries. Resources Policy, 82, 103573. [Google Scholar] [CrossRef]
- Albuquerque, R., Koskinen, Y., Yang, S., & Zhang, C. (2020). Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. The Review of Corporate Finance Studies, 9(3), 593–621. [Google Scholar] [CrossRef]
- Ardia, D., Bluteau, K., Boudt, K., & Inghelbrecht, K. (2020). Climate change concerns and the performance of green versus brown stocks. SSRN Electronic Journal, 3717722. [Google Scholar] [CrossRef]
- Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum everywhere. The Journal of Finance, 68(3), 929–985. [Google Scholar] [CrossRef]
- Baker, M., Bergstresser, D., Serafeim, G., & Wurgler, J. (2022). The pricing and ownership of US green bonds. Annual Review of Financial Economics, 14, 415–437. [Google Scholar] [CrossRef]
- Balvers, R., Du, D., & Zhao, X. (2017). Temperature shocks and the cost of equity capital: Implications for climate change perceptions. Journal of Banking & Finance, 77, 18–34. [Google Scholar] [CrossRef]
- Bansal, R., Kiku, D., & Ochoa, M. (2019). Climate change risk. Working paper. Federal Reserve Bank of San Francisco. [Google Scholar] [CrossRef]
- Bebchuk, L. A., Cohen, A., & Ferrell, A. (2009). What matters in corporate governance? Review of Financial Studies, 22(2), 783–827. [Google Scholar] [CrossRef]
- Berg, F., Kölbel, J. F., & Rigobon, R. (2022). Aggregate confusion: The divergence of ESG ratings. Review of Finance, 26(6), 1315–1344. [Google Scholar] [CrossRef]
- Blitz, D., & Swinkels, L. (2023). Does excluding sin stocks cost performance? Journal of Sustainable Finance & Investment, 13(4), 1693–1710. [Google Scholar]
- Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models. Australian Economic Papers, 17(31), 334. [Google Scholar] [CrossRef]
- Campbell, J. Y. (1991). A variance decomposition for stock returns. The Economic Journal, 101(405), 157–179. [Google Scholar] [CrossRef]
- Campbell, J. Y. (2018). Financial decissions and markets: A course in asset pricing. Princeton University Press. [Google Scholar]
- Campbell, J. Y., & Shiller, R. J. (1988). The dividend-price ratio and expectations of future dividends and discount factors. The Review of Financial Studies, 1(3), 195–228. [Google Scholar] [CrossRef]
- Cek, K., & Eyupoglu, S. (2020). Does environmental, social and governance performance influence economic performance? Journal of Business Economics and Management, 21(4), 1165–1184. [Google Scholar] [CrossRef]
- Cheema-Fox, A., LaPerla, B. R., Serafeim, G., Turkington, D., & Wang, H. (2021). Decarbonizing everything. Financial Analysts Journal, 77(3), 93–108. [Google Scholar] [CrossRef]
- Chen, S., Song, Y., & Gao, P. (2023). Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. Journal of Environmental Management, 345, 118829. [Google Scholar] [CrossRef]
- Cheng, B., Ioannou, I., & Serafeim, G. (2014). Corporate social responsibility and access to finance. Strategic Management Journal, 35(1), 1–23. [Google Scholar] [CrossRef]
- Climent Hernández, J. A., & Venegas Martínez, F. (2013). Valuación de opciones sobre subyacentes con rendimientos. Contaduría y Administración, 58(4), 119–150. [Google Scholar] [CrossRef]
- Cochrane, J. H. (1996). A cross-sectional test of an investment-based asset pricing model. Journal of Political Economy, 104(3), 572–621. [Google Scholar] [CrossRef]
- Cochrane, J. H. (2005). Asset pricing (revised edition). Princeton University Press. [Google Scholar]
- Dai, Y. (2024). Sustainable investing in emerging markets: Evidence from the Sustainable Stock Exchanges initiative. International Journal of Finance & Economics. [Google Scholar] [CrossRef]
- Dybvig, P. H., & Ingersoll, J. E. (1982). Mean-variance theory in complete markets. The Journal of Business, 55(2), 233–251. [Google Scholar] [CrossRef]
- Eccles, R. G., Ioannou, I., & Serafeim, G. (2012). The impact of a corporate culture of sustainability on corporate behavior and performance (Vol. 17950). National Bureau of Economic Research. [Google Scholar]
- Engle, R. F., Giglio, S., Kelly, B., Lee, H., & Stroebel, J. (2020). Hedging climate change news. The Review of Financial Studies, 33(3), 1184–1216. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22(1), 3–25. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23–49. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. [Google Scholar] [CrossRef]
- Ferson, W., Nallareddy, S., & Xie, B. (2013). The “out-of-sample” performance of long run risk models. Journal of Financial Economics, 107(3), 537–556. [Google Scholar] [CrossRef]
- Ferson, W. E., & Schadt, R. W. (1996). Measuring fund strategy and performance in changing economic conditions. The Journal of Finance, 51(2), 425–461. [Google Scholar] [CrossRef]
- Flammer, C. (2021). Corporate green bonds. Journal of Financial Economics, 142(2), 499–516. [Google Scholar] [CrossRef]
- Global Sustainable Investment Alliance GSIA. (2021). Global sustainable investment review. Biennial report. GSIA. [Google Scholar]
- Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica: Journal of the Econometric Society, 46, 1293–1301. [Google Scholar] [CrossRef]
- Gompers, P., Ishii, J., & Metrick, A. (2003). Corporate governance and equity prices. Quarterly Journal of Economics, 118(1), 107–156. [Google Scholar] [CrossRef]
- Grewal, J., & Serafeim, G. (2020). Research on corporate sustainability: Review and directions for future research. Foundations and Trends® in Accounting, 14(2), 73–127. [Google Scholar] [CrossRef]
- Guedhami, O., Knill, A., Megginson, W. L., & Senbet, L. W. (2022). The dark side of globalization: Evidence from the impact of COVID-19 on multinational companies. Journal of International Business Studies, 53(8), 1603–1640. [Google Scholar] [CrossRef]
- Hansen, L. P., & Richard, S. F. (1987). The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models. Econometrica, 55(3), 587–613. [Google Scholar] [CrossRef]
- Hong, H., Li, F. W., & Xu, J. (2019). Climate risks and market efficiency. Journal of Econometrics, 208(1), 265–281. [Google Scholar] [CrossRef]
- In, S. Y., Park, K. Y., & Monk, A. (2017). Is “being green” rewarded in the market? An empirical investigation of decarbonization risk and stock returns. International Association for Energy Economics (Singapore Issue), 46(48), 46–48. [Google Scholar]
- Jagannathan, R., & Wang, Z. (1996). The conditional CAPM and the cross-section of expected returns. The Journal of Finance, 51(1), 3–53. [Google Scholar] [CrossRef]
- Jiang, R., & Weng, C. (2019). Climate change risk and agriculture-related stocks. SSRN Electronic Journal, 3506311. [Google Scholar] [CrossRef]
- Khan, M. (2019). Corporate governance, ESG, and stock returns around the world. Financial Analysts Journal, 75(4), 103–123. [Google Scholar] [CrossRef]
- Khan, M., Serafeim, G., & Yoon, A. (2016). Corporate sustainability: First evidence on materiality. The Accounting Review, 91(6), 1697–1724. [Google Scholar] [CrossRef]
- Kolmogorov, A. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att, 4, 89–91. [Google Scholar]
- Kumar, A., Xin, W., & Zhang, C. (2019). Climate sensitivity and predictable returns. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Lago-Balsalobre, R., Rojo-Suárez, J., & Alonso-Conde, A. B. (2023). Cross-sectional implications of dynamic asset pricing with stochastic volatility and ambiguity aversion. The North American Journal of Economics and Finance, 66, 101909. [Google Scholar] [CrossRef]
- Lettau, M., & Ludvigson, S. (2001). Resurrecting the (C)CAPM: A cross-sectional test when risk premia are time-varying. Journal of Political Economy, 109(6), 1238–1287. [Google Scholar] [CrossRef]
- Lewellen, J., Nagel, S., & Shanken, J. (2010). A skeptical appraisal of asset pricing tests. Journal of Financial Economics, 96(2), 175–194. [Google Scholar] [CrossRef]
- Lins, K. V., Servaes, H., & Tamayo, A. (2017). Social capital, trust, and firm performance: The value of corporate social responsibility during the financial crisis. Journal of Finance, 72(4), 1785–1824. [Google Scholar] [CrossRef]
- Mantalos, P. (2003). Bootstrapping the Breusch-Godfrey autocorrelation test for a single equation dynamic model: Bootstrapping the restricted vs. unrestricted model. Monte Carlo Methods and Applications, 9(3), 257–269. [Google Scholar] [CrossRef]
- Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591–612. [Google Scholar] [CrossRef]
- Martins, A. M., Correia, P., & Gouveia, R. (2023). Russia-Ukraine conflict: The effect on European banks’ stock market returns. Journal of Multinational Financial Management, 67, 100786. [Google Scholar] [CrossRef]
- Nagar, V., & Schoenfeld, J. (2021). Shareholder monitoring and discretionary disclosure. Journal of Accounting and Economics, 72(1), 101422. [Google Scholar] [CrossRef]
- Parnes, D. (2020). Exploring economic anomalies in the S&P500 index. The Quarterly Review of Economics and Finance, 76, 292–309. [Google Scholar] [CrossRef]
- Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2021). Sustainable investing in equilibrium. Journal of Financial Economics, 142(2), 550–571. [Google Scholar] [CrossRef]
- Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2022). Dissecting green returns. Journal of Financial Economics, 146(2), 403–424. [Google Scholar] [CrossRef]
- Porter, M., & Kramer, M. (2011). Creating shared value. Harvard Business Review, 89(1–2), 62–77. [Google Scholar]
- Roh, T.-Y., Lee, C., & Min, B.-K. (2019). Consumption growth predictability and asset prices. Journal of Empirical Finance, 51, 95–118. [Google Scholar] [CrossRef]
- Rojo-Suárez, J., & Alonso-Conde, A. B. (2023). Short-run and long-run effects of ESG policies on value creation and the cost of equity of firms. Economic Analysis and Policy, 77, 599–616. [Google Scholar] [CrossRef]
- Rojo-Suárez, J., Alonso-Conde, A. B., & Gonzalez-Ruiz, J. D. (2024). Does sustainability improve financial performance? An analysis of Latin American oil and gas firms. Resources Policy, 88, 104484. [Google Scholar] [CrossRef]
- Roll, R. (1977). A critique of the asset pricing theory’s tests Part I: On past and potential testability of the theory. Journal of Financial Economics, 4(2), 129–176. [Google Scholar] [CrossRef]
- Ross, S. A. (1978). A simple approach to the valuation of risky streams. Journal of Business, 51(3), 453–475. [Google Scholar] [CrossRef]
- Serafeim, G., & Yoon, A. (2022). Stock price reactions to ESG news: The role of ESG ratings and disagreement. Review of Accounting Studies, 28, 1500–1530. [Google Scholar] [CrossRef]
- Shanken, J. (1990). Intertemporal asset pricing: An empirical investigation. Journal of Econometrics, 45(1–2), 99–120. [Google Scholar] [CrossRef]
- Sokhanvar, A., & Bouri, E. (2023). Commodity price shocks related to the war in Ukraine and exchange rates of commodity exporters and importers. Borsa Istanbul Review, 23(1), 44–54. [Google Scholar] [CrossRef]
- Sokhanvar, A., Çiftçioğlu, S., & Lee, C.-C. (2023). The effect of energy price shocks on commodity currencies during the war in Ukraine. Resources Policy, 82, 103571. [Google Scholar] [CrossRef]
- Venturini, A. (2022). Climate change, risk factors and stock returns: A review of the literature. International Review of Financial Analysis, 79, 101934. [Google Scholar] [CrossRef]
Panel A: 24 composite portfolios | |||||||||||
Low | 2 | High | Low | 2 | High | ||||||
Means | St. Dev. | ||||||||||
Small–BE/ME | 0.55 | 0.74 | 0.71 | Small–BE/ME | 6.4 | 5.73 | 6.4 | ||||
Big–BE/ME | 0.64 | 0.52 | 0.47 | Big–BE/ME | 4.38 | 4.56 | 6.15 | ||||
Small–OP | 0.47 | 0.81 | 0.84 | Small–OP | 6.55 | 5.54 | 6.41 | ||||
Big–OP | 0.3 | 0.54 | 0.69 | Big–OP | 5.51 | 4.65 | 4.18 | ||||
Small–ST Rev. | 0.69 | 0.76 | 0.46 | Small–ST Rev. | 7.43 | 5.88 | 6.06 | ||||
Big–ST Rev. | 0.45 | 0.68 | 0.42 | Big–ST Rev. | 6.14 | 4.38 | 4.54 | ||||
Small–LT Rev. | 0.76 | 0.76 | 0.71 | Small–LT Rev. | 7.26 | 5.57 | 6.07 | ||||
Big–LT Rev. | 0.53 | 0.59 | 0.65 | Big–LT Rev. | 5.49 | 4.18 | 4.76 | ||||
Panel B: 25 size–momentum | |||||||||||
Low | 2 | 3 | 4 | High | Low | 2 | 3 | 4 | High | ||
Means | St. Dev. | ||||||||||
Small | 0.3 | 0.62 | 0.75 | 0.94 | 0.82 | Small | 9.03 | 6.33 | 5.6 | 5.43 | 6.35 |
2 | 0.47 | 0.84 | 0.84 | 0.89 | 0.8 | 2 | 8.89 | 6.53 | 5.65 | 5.58 | 6.56 |
3 | 0.4 | 0.8 | 0.81 | 0.7 | 0.71 | 3 | 8.39 | 6.31 | 5.53 | 5.22 | 5.91 |
4 | 0.11 | 0.78 | 0.91 | 0.8 | 0.69 | 4 | 8.94 | 6.09 | 5.11 | 4.66 | 5.48 |
Big | 0.11 | 0.59 | 0.65 | 0.62 | 0.65 | Big | 8.21 | 5.48 | 4.45 | 4.18 | 4.65 |
Panel C: 32 size–BE/ME–operating profitability | |||||||||||
Small | Big | ||||||||||
BE/ME | Low | 2 | 3 | High | BE/ME | Low | 2 | 3 | High | ||
Means | Means | ||||||||||
Small–OP | 0.14 | 0.72 | 0.8 | 0.87 | Small–OP | 0.55 | 0.77 | 0.57 | 0.65 | ||
2 | 0.5 | 0.83 | 0.75 | 0.91 | 2 | 0.52 | 0.68 | 0.6 | 0.73 | ||
3 | 0.51 | 0.73 | 0.81 | 0.62 | 3 | 0.53 | 0.63 | 0.65 | 0.52 | ||
Big–OP | 0.65 | 0.65 | 1.04 | 0.72 | Big–OP | 0.25 | 0.55 | 0.67 | -0.29 | ||
St. Dev. | St. Dev. | ||||||||||
Small–OP | 8.03 | 6.12 | 5.7 | 5.99 | Small–OP | 7.23 | 6.69 | 4.99 | 4.44 | ||
2 | 6.93 | 5.63 | 5.37 | 6.48 | 2 | 5.74 | 4.72 | 4.31 | 4.23 | ||
3 | 6.63 | 5.66 | 5.97 | 8.01 | 3 | 4.84 | 4.83 | 4.84 | 5.63 | ||
Big–OP | 7.42 | 6.87 | 8.73 | 9.7 | Big–OP | 5.97 | 5.78 | 5.95 | 11.95 | ||
Panel D: 38 Industry Portfolios | |||||||||||
Means | St. Dev. | ||||||||||
Agric | Mines | Oil | Stone | Cnstr | Agric | Mines | Oil | Stone | Cnstr | ||
0.76 | 0.61 | 0.55 | 0.52 | 0.68 | 6.38 | 9.74 | 9.83 | 7.14 | 7.55 | ||
Food | Smoke | Txtls | Apprl | Wood | Food | Smoke | Txtls | Apprl | Wood | ||
0.62 | 0.89 | 0.33 | 0.54 | 0.58 | 3.49 | 6.25 | 9.47 | 6.94 | 8.75 | ||
Chair | Paper | Chems | Ptrlm | Chair | Paper | Chems | Ptrlm | ||||
0.44 | 0.45 | 0.04 | 0.54 | 0.72 | 7.61 | 5.24 | 6.59 | 3.85 | 6.44 | ||
Rubbr | Lethr | Glass | Metal | MtlPr | Rubbr | Lethr | Glass | Metal | MtlPr | ||
0.92 | 0.88 | 0.65 | 0.46 | 0.84 | 5.96 | 8.34 | 8.45 | 9.56 | 5.68 | ||
Machn | Elctr | Cars | Instr | Manuf | Machn | Elctr | Cars | Instr | Manuf | ||
0.68 | 0.71 | 0.77 | 0.76 | 0.1 | 6.41 | 7.29 | 6.93 | 4.84 | 6.57 | ||
Trans | Phone | TV | Utils | Garbg | Trans | Phone | TV | Utils | Garbg | ||
0.67 | 0.18 | 0.41 | 0.59 | 0.71 | 5.59 | 5.16 | 6.2 | 4.16 | 4.59 | ||
Steam | Water | Whlsl | Rtail | Money | Steam | Water | Whlsl | Rtail | Money | ||
NA | NA | 0.67 | 0.69 | 0.44 | NA | NA | 5.06 | 4.66 | 5.85 | ||
Srvc | Govt | Other | Srvc | Govt | Other | ||||||
0.63 | 0.22 | 0.27 | 5.3 | 6.48 | 5.37 | ||||||
Panel E: Market factors and ESG score | |||||||||||
RM RF | SMB | HML | RMW | CMA | ∆ESG | RM ∆ESG | |||||
Means | 0.58 | 0.17 | −0.01 | 0.32 | 0.16 | Mean | 0.06 | Mean | −0.01 | ||
St. Dev. | 4.54 | 2.6 | 3.04 | 2.02 | 1.91 | St. Dev. | 3.33 | St. Dev. | 0.2 |
Variable | Definition | Calculation Methodology | Source |
---|---|---|---|
Size (ME) | Market equity or firm size | Stock price multiplied by the number of shares outstanding at the end of June. Portfolios are split into “small” and “big” based on the NYSE median market equity. | Kenneth R. French Data Library |
BE/ME | Book-to-market ratio | Book equity from the last fiscal year end in t − 1 divided by market equity in December of t − 1. | Kenneth R. French Data Library |
OP (Operating Profitability) | Operating profitability | (Annual revenues − cost of goods sold − interest expense − SG&A expenses) divided by book equity (fiscal year t − 1). | Kenneth R. French Data Library |
Short-term Reversal | Short-term return reversal effect | Return in month t − 1 (prior 1-month return). Portfolios are sorted using NYSE 30th and 70th percentiles into Low, Medium, and High groups. | Kenneth R. French Data Library |
Long-term Reversal | Long-term return reversal effect | Cumulative return from month t − 60 to t − 13. Portfolios are formed using NYSE 30th and 70th percentiles into Low, Medium, and High groups. | Kenneth R. French Data Library |
Momentum (2–12) | Intermediate-term past return (momentum) | Cumulative return from month t − 12 to t − 2. Portfolios are sorted into quintiles for both size and past return to form 25 size–momentum portfolios. | Kenneth R. French Data Library |
CAPM-ESG | CAPM | Fama–French (Three Factors) | Fama–French (Five Factors) | |||||
---|---|---|---|---|---|---|---|---|
Factors | Estimation | t-Statistic | Estimation | t-Statistic | Estimation | t-Statistic | Estimation | t-Statistic |
Panel A: 24 composite portfolios | ||||||||
Intercept | 0.070 | (1.077) | 0.005 | (1.236) | 0.011 | (3.298) | 0.004 | (0.983) |
λΔESG | 0.013 | (0.680) | ||||||
λRM-ESG | 0.000 | (−0.149) | ||||||
λRMRF | −0.001 | (−0.130) | 0.001 | (0.191) | −0.005 | (−1.234) | 0.002 | (0.388) |
λSMB | 0.001 | (0.852) | 0.001 | (0.904) | ||||
λHML | 0.000 | (0.242) | 0.000 | (0.060) | ||||
λRMW | 0.004 | (2.977) | ||||||
λCMA | 0.000 | (0.150) | ||||||
R2 | 0.591 | 0.327 | 0.010 | −0.040 | 0.322 | 0.237 | 0.815 | 0.795 |
MAE (%) | 0.07 | 0.12 | 0.10 | 0.05 | ||||
J-test | 10.820 | (0.951) | 33.482 | (0.055) | 31.606 | (0.048) | 19.797 | (0.344) |
Panel B: 25 size–momentum portfolios | ||||||||
Intercept | 0.014 | (3.794) | 0.014 | (3.550) | 0.015 | (3.898) | 0.006 | (1.350) |
λΔESG | −0.003 | (−0.258) | ||||||
λRM-ESG | 0.000 | (−0.389) | ||||||
λRMRF | −0.006 | (−1.396) | −0.006 | (−1.346) | −0.009 | (−1.885) | 0.000 | (−0.025) |
λSMB | 0.001 | (0.636) | 0.003 | (1.464) | ||||
λHML | 0.001 | (0.293) | 0.002 | (0.507) | ||||
λRMW | 0.007 | (2.233) | ||||||
λCMA | 0.005 | (1.501) | ||||||
R2 | 0.536 | 0.454 | 0.496 | 0.428 | 0.741 | 0.651 | 0.862 | 0.806 |
MAE (%) | 0.13 | 0.13 | 0.09 | 0.07 | ||||
J-test | 38.343 | (0.012) | 40.883 | (0.012) | 36.797 | (0.018) | 23.834 | (0.203) |
Panel C: 32 size–value–operating profitability portfolios | ||||||||
Intercept | 0.010 | (1.695) | 0.010 | (2.368) | 0.016 | (2.822) | 0.014 | (2.137) |
λΔESG | −0.017 | (−1.474) | ||||||
λRM-ESG | −0.001 | (−1.985) | ||||||
λRMRF | −0.003 | (−0.492) | −0.004 | (−0.681) | −0.011 | (−1.612) | −0.008 | (−1.086) |
λSMB | 0.001 | (0.845) | 0.002 | (0.938) | ||||
λHML | 0.000 | (−0.174) | −0.002 | (−0.910) | ||||
λRMW | 0.003 | (1.797) | ||||||
λCMA | 0.002 | (1.031) | ||||||
R2 | 0.405 | 0.308 | 0.082 | 0.078 | 0.340 | 0.236 | 0.476 | 0.351 |
MAE (%) | 0.14 | 0.16 | 0.14 | 0.12 | ||||
J-test | 22.905 | (0.738) | 40.627 | (0.093) | 35.544 | (0.155) | 28.583 | (0.330) |
Panel D: 38 industry portfolios | ||||||||
Intercept | 0.010 | (2.874) | 0.007 | (2.578) | 0.008 | (2.849) | 0.007 | (2.171) |
λΔESG | −0.011 | (−1.238) | ||||||
λRM-ESG | 0.001 | (−1.588) | ||||||
λRMRF | −0.004 | (−0.879) | −0.001 | (−0.231) | −0.002 | (−0.507) | −0.001 | (−0.207) |
λSMB | 0.001 | (0.500) | −0.002 | (−0.507) | ||||
λHML | −0.002 | (−0.812) | −0.003 | (−1.093) | ||||
λRMW | 0.003 | (1.062) | ||||||
λCMA | −0.004 | (−1.076) | ||||||
R2 | 0.327 | 0.321 | 0.014 | −0.009 | 0.105 | 0.075 | 0.208 | 0.198 |
MAE (%) | 0.14 | 0.17 | 0.15 | 0.15 | ||||
J-test | 23.616 | (0.858) | 39.175 | (0.249) | 37.266 | (0.240) | 31.966 | (0.369) |
Panel E: Total assets | ||||||||
Intercept | 0.010 | (3.372) | 0.009 | (3.456) | 0.012 | (4.565) | 0.010 | (3.691) |
λΔESG | −0.013 | (−1.786) | ||||||
λRM-ESG | −0.001 | (−2.371) | ||||||
λRMRF | −0.004 | (−0.873) | −0.002 | (−0.598) | −0.006 | (−1.498) | −0.004 | (−1.086) |
λSMB | 0.001 | (0.831) | 0.002 | (0.959) | ||||
λHML | 0.000 | (−0.148) | −0.001 | (−0.644) | ||||
λRMW | 0.002 | (1.421) | ||||||
λCMA | 0.000 | (−0.061) | ||||||
R2 | 0.298 | 0.085 | 0.068 | 0.046 | 0.248 | 0.227 | 0.352 | 0.243 |
MAE (%) | 0.13 | 0.15 | 0.13 | 0.12 | ||||
J-test | 209.308 | (0.000) | 272.424 | (0.000) | 264.258 | (0.000) | 253.325 | (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galicia-Sanguino, L.; Lago-Balsalobre, R. Is the ESG Score Part of the Set of Information Available to Investors? A Conditional Version of the Green Capital Asset Pricing Model. Int. J. Financial Stud. 2025, 13, 88. https://doi.org/10.3390/ijfs13020088
Galicia-Sanguino L, Lago-Balsalobre R. Is the ESG Score Part of the Set of Information Available to Investors? A Conditional Version of the Green Capital Asset Pricing Model. International Journal of Financial Studies. 2025; 13(2):88. https://doi.org/10.3390/ijfs13020088
Chicago/Turabian StyleGalicia-Sanguino, Lucía, and Rubén Lago-Balsalobre. 2025. "Is the ESG Score Part of the Set of Information Available to Investors? A Conditional Version of the Green Capital Asset Pricing Model" International Journal of Financial Studies 13, no. 2: 88. https://doi.org/10.3390/ijfs13020088
APA StyleGalicia-Sanguino, L., & Lago-Balsalobre, R. (2025). Is the ESG Score Part of the Set of Information Available to Investors? A Conditional Version of the Green Capital Asset Pricing Model. International Journal of Financial Studies, 13(2), 88. https://doi.org/10.3390/ijfs13020088