The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa
Abstract
:1. Introduction
- (1)
- Practical innovation: For the first time, a study in the South African context will provide insight into how investor sentiment influences equity market returns in both bull and bear market conditions. Because they may use the study’s findings to make more informed decisions regarding asset selection, portfolio rebalancing, portfolio formulation, and portfolio diversification during sentiment-induced markets and changing market conditions, investors will be able to minimize losses.
- (2)
- Theoretical innovation: The study introduces Lo’s (2004) proposition that asset markets are adaptive. Consequently, the findings of the study can be used by policy makers to develop financial market policies that align with the new evidence that markets are adaptive. This will reduce unfair market behaviour and asset price manipulation, which cause financial market mispricing.
- (3)
- Empirical innovation: The study introduces new evidence that investor sentiment has a nonlinear effect on stock market returns in South African and emerging markets, thereby shifting the dominant focus of empirical literature on the linear effect to the nonlinear perspective. Moreover, the study introduces a new methodology, the Markov regime-switching model, and market-wide investor sentiment index to examine the nonlinearity between sentiment and stock market returns. By providing an appropriate model and sentiment index to analyze the nonlinear relationship between sentiment and asset returns in emerging markets, this significantly advances research in South African and emerging markets.
2. Literature Review
2.1. Investor Behavior Conceptualization
2.2. Empirical Review
3. Data
3.1. Sample and Measurement of South African Stock Market Returns
3.2. Measuring Investor Sentiment
3.2.1. Investor Sentiment Proxies
Advance/Decline Ratio Index
Equity-Issue Ratio
South African Volatility Index
Rand/Dollar Bid-Ask Spread
South African Consumer Confidence Index
CNN Fear and Greed Index
4. Model Specification
4.1. Principal Component Analysis
4.2. Markov Regime-Switching Model
4.3. Preliminary and Diagnostic Tests
5. Empirical Results
5.1. Preliminary Tests
5.1.1. Descriptive Statistics
5.1.2. Multicollinearity Test
5.1.3. Unit Root and Stationarity Test
5.2. Empirical Model Results
5.2.1. Investor Sentiment Index Estimation
5.2.2. Markov-Regime Switching Model Results
Transition Probabilities and Expected Duration
Regime-Switching Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable Name | Abbreviation |
---|---|
JSE All-Share Index | JSE_ALSI |
Financial Sector (FIN15) | |
Financials Index | JSE_FIN |
Industrial Sector (IND25) | |
Industrials Index | JSE_IND |
Consumer Goods Index | JSE_CONG |
Health Care Index | JSE_HEAL |
Consumer Services Index | JSE_CONS |
Telecommunications Index | JSE_TELCOM |
Utilities Index | JSE_UT |
Technologies Index | JSE_TECH |
Resource Sector (RES10) | |
Oil and Gas Index | JSE_OG |
Basic Materials Index | JSE_BM |
References
- Agudelo Aguirre, R. A., & Agudelo Aguirre, A. A. (2024). Behavioral finance: Evolution from the classical theory and remarks. Journal of Economic Surveys, 10(1), 187–201. [Google Scholar] [CrossRef]
- Agyei, S. K., Umar, Z., Bossman, A., & Teplova, T. (2023). Dynamic connectedness between global commodity sectors, news sentiment, and sub-Saharan African equities. Emerging Markets Review, 56, 101049. [Google Scholar] [CrossRef]
- Ah Mand, A., Janor, H., Abdul Rahim, R., & Sarmidi, T. (2023). Herding behavior and stock market conditions. PSU Research Review, 7(2), 105–116. [Google Scholar] [CrossRef]
- Aissia, D. B., & Neffati, N. (2022). Investor sentiment, bull and bear markets and stock returns. International Journal of Banking, Accounting and Finance, 13(2), 115–144. [Google Scholar] [CrossRef]
- Alam, M., Uddin, G., & Taufique, K. (2017). The Relationships between exchange rates and stock prices: Empirical investigation from Johannesburg stock exchange. Emerging Economies, 3(1), 1–8. [Google Scholar]
- Antoniou, C., Doukas, J. A., & Subrahmanyam, A. (2013). Investor sentiment, and beta pricing. Social Science Research Network, 1(2), 1–78. [Google Scholar]
- Aristei, D., & Martelli, D. (2014). Sovereign bond yield spreads and market sentiment and expectations: Empirical evidence from Euro area countries. Journal of Economics and Business, 76, 55–84. [Google Scholar] [CrossRef]
- Baker, M., & Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of Financial Markets, 7(3), 271–299. [Google Scholar] [CrossRef]
- Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61(4), 1645–1680. [Google Scholar] [CrossRef]
- Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129–152. [Google Scholar] [CrossRef]
- Banerjee, A. K. (2022). You sneeze, and the markets are paranoid: The fear, uncertainty and distress sentiments impact of the COVID-19 pandemic on the stock–bond correlation. Journal of Risk Finance, 23(5), 652–668. [Google Scholar] [CrossRef]
- Beer, F., & Zouaoui, M. (2013). Measuring stock market investor sentiment. Journal of Applied Business Research, 29(1), 51. [Google Scholar]
- Beirne, J., Renzhi, N., & Volz, U. (2024). Local currency bond markets, foreign investor participation and capital flow volatility in emerging Asia. The Singapore Economic Review, 69, 517–541. [Google Scholar] [CrossRef]
- Boido, C., & Fasano, A. (2014). CAPM with sentiment: The efficient market hypothesis spiced up with sentiment. SSRN, 8(7). [Google Scholar] [CrossRef]
- Brooks, C. (2019). Introductory econometrics for finance (2nd ed.). Cambridge University Press. [Google Scholar]
- Brown, G. W., & Cliff, M. T. (2004). Investor sentiment and the near-term stock market. Journal of Empirical Finance, 11(1), 19–27. [Google Scholar] [CrossRef]
- Camacho, M., Perez-Quiros, G., & Poncela, P. (2018). Markov-switching dynamic factor models in real time. International Journal of Forecasting, 34(4), 598–611. [Google Scholar] [CrossRef]
- Cevik, E., Kirci Altinkeski, B., Cevik, E. I., & Dibooglu, S. (2022). Investor sentiments and stock markets during the COVID-19 pandemic. Financial Innovation, 8(1), 69–79. [Google Scholar] [CrossRef] [PubMed]
- Chen, H., Shan, L., & Wang, C. (2021, October 23). Investment sentiment in finance market. 3rd International Conference on Economic Management and Cultural Industry (ICEMCI 2021), Guangzhou, China. [Google Scholar]
- Corredor, P., Ferrer, E., & Santamaria, R. (2013). Investor sentiment effect in stock markets: Stock characteristics or country-specific factors? International Review of Economics and Finance, 27(1), 572–59. [Google Scholar] [CrossRef]
- Davies, J. E. (2013). Predicting the bull run: Scientific evidence for turning points of markets [Unpublished Ph.D. thesis, University of Cape Town]. [Google Scholar]
- De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 6(1), 703–738. [Google Scholar] [CrossRef]
- Dhasmana, S., Ghosh, S., & Kanjilal, K. (2023). Does investor sentiment influence ESG stock performance? Evidence from India. Journal of Behavioral and Experimental Finance, 37, 100789. [Google Scholar] [CrossRef]
- Dlamini, C. S. (2017). The relationship between macroeconomic indicators and stock returns: Evidence from the JSE sectoral indices [Unpublished Master’s dissertation, University of the Witwatersrand]. [Google Scholar]
- Erer, D., Erer, E., & Güngör, S. (2023). The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: A comparative analysis with COVID-19 outbreak and the global financial crisis. Financial Innovation, 9(1), 1–25. [Google Scholar] [CrossRef] [PubMed]
- Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105. [Google Scholar] [CrossRef]
- Gong, X., Zhang, W., Wang, J., & Wang, C. (2022). Investor sentiment and stock volatility: New evidence. International Review of Financial Analysis, 80, e102028. [Google Scholar] [CrossRef]
- Guo, D., Zheng, Y., Wang, W., Hu, P. N., Yang, Z., & Chen, Z. (2023). The impact of different sentiment in investment decisions: Evidence from China’s stock markets IPOs. Economic Research—Ekonomska Istraživanja, 36(1), 2113739. [Google Scholar] [CrossRef]
- Gupta, R., & Basu, P. K. (2007). Weak form efficiency in Indian stock markets. International Business and Economics Research Journal, 6(3), 57–64. [Google Scholar] [CrossRef]
- Halliday, A. E. (2018). Assessing the relationship of investor sentiment and herding and the closed-end fund discount cycle [Unpublished Ph.D. thesis, Holy Angel University]. [Google Scholar]
- Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society, 4(16), 357–384. [Google Scholar] [CrossRef]
- Hamurcu, C. (2021). How consumer confidence index affects foreign investors’ portfolio and equity security investments: A research on Turkey. Manisa Celal Bayar Üniversitesi Sosyal Bilimler Dergisi, 19(2), 191–204. [Google Scholar] [CrossRef]
- Hanna, A. J., Turner, J. D., & Walker, C. B. (2020). News media and investor sentiment during bull and bear markets. The European Journal of Finance, 26(14), 1377–1395. [Google Scholar] [CrossRef]
- Harzallah, A. A., & Abbes, M. B. (2020). The impact of financial crises on the asset allocation: Classical theory versus behavioral theory. Journal of Interdisciplinary Economics, 32(2), 218–236. [Google Scholar] [CrossRef]
- He, G., Zhu, S., & Gu, H. (2020). The nonlinear relationship between investor sentiment, stock return, and volatility. Discrete Dynamics in Nature and Society, 1(11), 81–96. [Google Scholar] [CrossRef]
- Hengelbrock, J., Theissen, E., & Westheide, C. (2013). Market response to investor sentiment. Journal of Business Finance & Accounting, 40(7–8), 901–917. [Google Scholar]
- Hens, T., & Rieger, M. O. (2016). Financial economics: A concise introduction to classical and behavioral finance. Springer. Available online: https://link.springer.com/content/pdf/10.1007/978-3-662-49688-6.pdf (accessed on 4 March 2024). [CrossRef]
- Hu, J., Sui, Y., & Ma, F. (2021). The measurement method of investor sentiment and its relationship with stock market. Computational Intelligence and Neuroscience, 1, e6672677. [Google Scholar] [CrossRef]
- Huang, T. L. (2015). Asymmetric effects of investor attention on stock returns in bull and bear markets. Zhongshan Management Review, 23(2), 631–656. [Google Scholar] [CrossRef]
- Huang, W., Wang, H., Wei, Y., & Chevallier, J. (2024). Complex network analysis of global stock market co-movement during the COVID-19 pandemic based on intraday open-high-low-close data. Financial Innovation, 10(1), 1–50. [Google Scholar] [CrossRef]
- Iqbal, N., Gul, F., & Mubarik, F. (2023). Investor Sentiments and Stock Returns: A Study on Noise Traders. Journal of Positive School Psychology, 7(1), 53–64. [Google Scholar]
- JSE. (2023). Integrated annual report 2023. Available online: https://group.jse.co.za/sites/default/files/media/documents/1-jse-ltd-integrated-annual-report-2023-28032024-published/1%20-%20JSE%20Ltd%20%E2%80%93%20Integrated%20Annual%20Report%202023%20%E2%80%93%2028032024%20-%20As%20published_0.pdf (accessed on 8 October 2024).
- Junaeni, I. (2020). Analysis of factors that influence decision making invest in capital markets in millennial generations. International Journal of Accounting & Finance in Asia Pasific (IJAFAP), 3(3), 11–24. [Google Scholar]
- Kassambara, A. (2017). Practical guide to principal component methods in: PCA, M (CA), FAMD, MFA, HCPC, factoextra (1st ed.). Sthda. [Google Scholar]
- Keynes, J. M. (1936). The general theory of interest, employment and money (2nd ed.). MacMillan. [Google Scholar]
- Konstantinidis, A., Katarachia, A., Borovas, G., & Voutsa, M. E. (2012). From efficient market hypothesis to behavioural finance: Can behavioural finance be the new dominant model for investing. Scientific Bulletin–Economic Sciences, 11(2), 16–26. [Google Scholar]
- Koy, A., & Akkaya, M. (2017). The role of consumer confidence as a leading indicator on stock returns: A Markov switching approach. Social Science Research Network. [Google Scholar] [CrossRef]
- Kurov, A. (2008). Investor sentiment, trading behavior and informational efficiency in index futures markets. Financial Review, 43(1), 107–127. [Google Scholar] [CrossRef]
- Latif, M., Arshad, S., Fatima, M., & Farooq, S. (2011). Market efficiency, market anomalies, causes, evidences, and some behavioral aspects of market anomalies. Research Journal of Finance and Accounting, 2(9), 1–13. [Google Scholar]
- Lekhal, M., & El Oubani, A. (2020). Does the adaptive market hypothesis explain the evolution of emerging markets efficiency? Evidence from the Moroccan financial market. Heliyon, 6(7), 123–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. X., & Zhang, L. (2008). Momentum profits, factor pricing, and macroeconomic risk. Review of Financial Studies, 21(6), 2417–2448. [Google Scholar] [CrossRef]
- Liu, N., Bredin, D., Wang, L., & Yi, Z. (2020). Domestic and foreign institutional investors’ behavior in China. Routledge. [Google Scholar]
- Liu, Y. H., Dai, S. R., Chang, F. M., Lin, Y. B., & Lee, N. R. (2020). Does the investor sentiment affect the stock returns in taiwan’s stock market under different market states? Journal of Applied Finance and Banking, 10(5), 41–59. [Google Scholar]
- Liutvinavičius, M., Zubova, J., & Sakalauskas, V. (2017). Behavioural economics approach: Using investors sentiment indicator for financial markets forecasting. Baltic Journal of Modern Computing, 5, 275–291. [Google Scholar] [CrossRef]
- Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management, Forthcoming, 1(7), 1–31. [Google Scholar]
- Lo, A. W. (2005). Reconciling efficient markets with behavioral finance: The adaptive markets hypothesis. Journal of Investment Consulting, 7(2), 21–44. [Google Scholar]
- Luong, A. T., Le, T. H., Le, T. T., & Nguyen, H. N. (2023). Investor sentiment, stock returns, and the dependence between their quantiles: Evidence from G7 countries. Applied Economics Letters, 7(1), 1–6. [Google Scholar] [CrossRef]
- Modigliani, F., & Cohn, R. A. (1979). Inflation, rational valuation and the market. Financial Analysts Journal, 35(2), 24–44. [Google Scholar] [CrossRef]
- Monke, E. (2021). Investors are turning to emerging markets—Should you? Available online: https://www.fidelity.co.uk/markets-insights/markets/asia-emerging-markets/investors-turning-emerging-markets-should-you/ (accessed on 1 March 2024).
- Moodley, F., Ferreira-Schenk, S., & Matlhaku, K. (2024). Effect of market-wide investor sentiment on South African government bond indices of varying maturities under changing market conditions. Economies, 12(10), 265. [Google Scholar] [CrossRef]
- Moodley, F., Nzimande, N., & Muzindutsi, P. F. (2022). Stock returns indices and changing macroeconomic conditions: Evidence from the Johannesburg securities exchange. The Journal of Accounting and Management, 12(3), 24–36. [Google Scholar]
- Muguto, L. (2022). Analysis of stock return volatility and its response to investor sentiment: An examination of emerging and developed markets [Unpublished Ph.D. thesis, University of KwaZulu-Natal]. [Google Scholar]
- Muguto, T. H., Muguto, L., Bhayat, A., Ncalane, H., Jack, K. J., Abdullah, S., Nkosi, T. S., & Muzindutsi, P. F. (2022). The impact of investor sentiment on sectoral returns and volatility: Evidence from the Johannesburg stock exchange. Cogent Economics & Finance, 10(1), e2158007. [Google Scholar] [CrossRef]
- Muguto, T. H., Rupande, L., & Muzindutsi, P. F. (2019). Investors entiment and foreign financial flows: Evidence from SouthAfrica. Zbornik Radova Ekonomskog Fakulteta u Rijeci, 37(2), 473–498. [Google Scholar] [CrossRef]
- Muzindutsi, P. F., Apau, R., Muguto, L., & Muguto, H. T. (2023). The impact of investor sentiment on housing prices and the property stock index volatility in South Africa. Real Estate Management and Valuation, 31(2), 1–17. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development [OECD]. (2022). Consumer confidence index (BCI). Available online: https://data.oecd.org/leadind/consumer-confidence-index-cci.htm (accessed on 2 March 2024).
- Palamalai, S., Kumar, K. K., & Maity, B. (2021). Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Review, 21(3), 256–268. [Google Scholar] [CrossRef]
- Pan, W. F. (2020). Does investor sentiment drive stock market bubbles? Beware of excessive optimism! Journal of Behavioral Finance, 21(1), 27–41. [Google Scholar] [CrossRef]
- Phan, T. N. T., Bertrand, P., Phan, H. H., & Vo, X. V. (2023). The role of investor behavior in emerging stock markets: Evidence from Vietnam. The Quarterly Review of Economics and Finance, 87(2), 367–376. [Google Scholar] [CrossRef]
- Rahman, M. L., & Shamsuddin, A. (2019). Investor sentiment and the price-earnings ratio in the G7 stock markets. Pacific-Basin Finance Journal, 55(1), 46–62. [Google Scholar] [CrossRef]
- Reis, P. M. N., & Pinho, C. (2020). A new European investor sentiment index (EURsent) and its return and volatility predictability. Journal of Behavioral and Experimental Finance, 27, e100373. [Google Scholar] [CrossRef]
- Rupande, L., Muguto, H. T., & Muzindutsi, P. F. (2019). Investor sentiment and stock return volatility: Evidence from the Johannesburg Stock Exchange. Cogent Economics & Finance, 7(1), 101–118. [Google Scholar] [CrossRef]
- Shen, Y., Liu, C., Sun, X., & Guo, K. (2023). Investor sentiment and the Chinese new energy stock market: A risk–return perspective. International Review of Economics & Finance, 84(1), 395–408. [Google Scholar] [CrossRef]
- Sobaih, A. E. E., & Elshaer, I. A. (2023). Risk-taking, financial knowledge, and risky investment intention: Expanding theory of planned behavior using a moderating-mediating model. Mathematics, 11(2), 433–453. [Google Scholar] [CrossRef]
- Spulbar, C., Birau, R., & Spulbar, L. F. (2021). A critical survey on efficient market hypothesis (EMH), adaptive market hypothesis (AMH) and fractal markets hypothesis (FMH) considering their implication on stock markets behavior. Ovidius University Annals, Economic Sciences Series, 21(2), 1161–1165. [Google Scholar] [CrossRef]
- Spyrou, S. (2013). Investor sentiment and yield spread determinants: Evidence from European markets. Journal of Economic Studies, 40(6), 739–762. [Google Scholar] [CrossRef]
- Stambaugh, R. F., Yu, J., & Yuan, Y. (2012). The short of it: Investor sentiment and anomalies. Journal of Financial Economics, 10(2), 288–302. [Google Scholar] [CrossRef]
- Steyn, D. H., Greyling, T., Rossouw, S., & Mwamba, J. M. (2020). Sentiment, emotions andstock market predictability in developed and emerging markets (No. 502). Global Labor Organization (GLO). [Google Scholar]
- Tiwari, A. K., Abakah, E. J. A., Bonsu, C. O., Karikari, N. K., & Hammoudeh, S. (2022). The effects of public sentiments and feelings on stock market behavior: Evidence from Australia. Journal of Economic Behavior & Organization, 19(1), 443–472. [Google Scholar] [CrossRef]
- Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185, 1124–1131. [Google Scholar] [CrossRef]
- Wang, W., Su, C., & Duxbury, D. (2021). Investor sentiment and stock returns: Global evidence. Journal of Empirical Finance, 63(1), 365–361. [Google Scholar] [CrossRef]
- Wang, W., Su, C., & Duxbury, D. (2022). The conditional impact of investor sentiment in global stock markets: A two-channel examination. Journal of Banking & Finance, 138, e106458. [Google Scholar] [CrossRef]
- Woo, K. Y., Mai, C., McAleer, M., & Wong, W. K. (2020). Review on efficiency and anomalies in stock markets. Economies, 8(1), 20–33. [Google Scholar] [CrossRef]
- Ying, Q., Yousaf, T., Ain, Q. U., Akhtar, Y., & Rasheed, M. S. (2019). Stock investment and excess returns: A critical review in the light of the efficient market hypothesis. Journal of Risk and Financial Management, 12(2), 97–112. [Google Scholar] [CrossRef]
Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis | Jarque-Bera | Probability | Observations | BDS | |
---|---|---|---|---|---|---|---|---|---|---|---|
JSE_ALSI | 0.8232 | 1.0702 | 0.9463 | −1.0311 | 7.4712 | −0.2456 | 3.7283 | 7.5889 | 0.0225 | 203 | 0.0174 *** |
JSE_FIN | 0.6307 | 0.9791 | 1.7315 | −3.2605 | 5.4672 | −1.2714 | 10.3277 | 15.5859 | 0.0000 | 203 | 0.0193 *** |
JSE_INDU | 0.5793 | 0.6305 | 8.5462 | −2.8568 | 5.1475 | −0.7670 | 6.6413 | 15.5160 | 0.0000 | 203 | 0.0084 * |
JSE_CONG | 1.0812 | 1.1792 | 9.8064 | −1.2778 | 5.1505 | −0.1670 | 4.4015 | 20.4121 | 0.0000 | 203 | 0.0174 ** |
JSE_HEAL | −0.1731 | 0.9188 | 4.5585 | −2.9965 | 5.6542 | −0.1544 | 4.4137 | 28.8037 | 0.0000 | 203 | 0.0793 *** |
JSE_CONS | 0.8614 | 1.1468 | 7.9583 | −3.9257 | 6.8627 | −0.8984 | 7.4930 | 23.0261 | 0.0000 | 203 | 0.0183 *** |
JSE_TELCOM | 0.4441 | 0.5401 | 7.7318 | −2.4236 | 6.8502 | −0.3428 | 3.6334 | 8.5670 | 0.0138 | 203 | 0.0128 *** |
JSE_UT | 0.6191 | 0.6707 | 0.9521 | −2.9295 | 6.2903 | 0.0368 | 5.8606 | 80.5212 | 0.0000 | 203 | 0.0431 ** |
JSE_TECH | 0.7238 | 0.5131 | 2.1223 | −2.6199 | 7.7314 | −0.0083 | 5.8957 | 82.4565 | 0.0000 | 203 | 0.0151 *** |
JSE_OG | 0.7390 | −0.4890 | 8.0293 | −3.3026 | 9.8284 | 7.0602 | 8.2238 | 73.3810 | 0.0000 | 203 | 0.0138 *** |
JSE_BM | 0.4943 | 0.2811 | 2.6136 | −2.5829 | 7.2335 | −0.3800 | 3.5703 | 8.8789 | 0.0118 | 203 | 0.0106 * |
SENT | −3.76 × 10−2 | −0.1180 | 4.6239 | −3.4905 | 1.8943 | 0.2031 | 1.9804 | 11.8442 | 0.0027 | 203 | 0.1440 *** |
CPI | −0.1330 | 1.5893 | 2.0000 | −2.4615 | 7.4515 | −8.0843 | 1.8314 | 98.6191 | 0.0000 | 203 | 0.0183 *** |
ST_INT | 0.2135 | 2.8941 | 4.6667 | −2.2867 | 5.1370 | 2.3049 | 9.0844 | 27.5293 | 0.0000 | 203 | 0.0187 *** |
LT_INT | 0.1619 | 2.4789 | 3.6986 | −4.2857 | 3.9722 | −1.0387 | 9.9488 | 51.7247 | 0.0000 | 203 | 0.0162 ** |
GDP | 0.5594 | 0.8937 | 2.2345 | −2.3363 | 8.1251 | 0.3945 | 4.8147 | 38.5068 | 0.0000 | 203 | 0.0217 *** |
Coefficient | Uncentered | Centered | |
---|---|---|---|
Variable | Variance | VIF | VIF |
C | 0.0854 | 1.0099 | NA |
SENT | 0.0237 | 1.0023 | 1.0023 |
CPI | 0.0015 | 1.0073 | 1.0070 |
ST_INT | 0.0033 | 1.0077 | 1.0053 |
LT_INT | 0.0054 | 1.0104 | 1.0087 |
GDP | 0.0013 | 1.0224 | 1.0175 |
Levels | |||
---|---|---|---|
ADF | KPSS | ADF-Break Point | |
JSE_ALSI | −16.0062 *** | 0.31844 | −16.8339 *** |
JSE_FIN | −15.5809 *** | 0.2264 | −18.0504 *** |
JSE_INDU | −13.6570 *** | 0.4335 | −15.2348 *** |
JSE_CONG | −17.8068 *** | 0.5671 | −18.7547 *** |
JSE_HEAL | −15.4891 *** | 0.2019 | −41.3849 *** |
JSE_CONS | −14.1033 *** | 0.1688 | −16.0058 *** |
JSE_TELCOM | −15.1835 *** | 0.4455 | −15.7918 *** |
JSE_UT | −14.5223 *** | 0.1225 | −15.6826 *** |
JSE_TECH | −14.8732 *** | 0.2909 | −15.4748 *** |
JSE_OG | −15.8351 *** | 0.1669 | −19.8100 *** |
JSE_BM | −16.3124 *** | 0.1232 | −17.0500 *** |
SENT | −3.7508 *** | 0.0904 | −20.7143 *** |
CPI | −14.1264 *** | 0.0975 | −14.5357 *** |
ST_INT | −14.5517 *** | 0.4013 | −16.5231 *** |
LT_INT | −7.5624 *** | 0.1668 | −12.2402 *** |
GDP | −9.7600 *** | 0.2033 | −12.7333 *** |
Number | Value | Difference | Proportion | Cumulative Value | Cumulative Proposition |
---|---|---|---|---|---|
1 | 3.5731 | 2.4690 | 0.5104 | 3.5731 | 0.5104 |
2 | 1.1041 | 0.2217 | 0.1577 | 4.6772 | 0.6682 |
3 | 0.8824 | 0.1559 | 0.1261 | 5.5596 | 0.7942 |
4 | 0.7265 | 0.0742 | 0.1038 | 6.2861 | 0.8980 |
5 | 0.6523 | 0.6143 | 0.0932 | 6.9384 | 0.9912 |
6 | 0.0380 | 0.0144 | 0.0054 | 6.9763 | 0.9966 |
7 | 0.0236 | --- | 0.0034 | 7.0000 | 1.0000 |
JSE Index | Transition Probabilities | Expected Duration | ||
---|---|---|---|---|
Regime | Bull | Bear | Bull | Bear |
JSE_ALSI | 0.9857 | 0.9026 | 69.6889 | 10.2619 |
JSE_FIN | 0.9880 | 0.9740 | 83.4594 | 38.4876 |
JSE_INDU | 0.1942 | 0.9673 | 1.2411 | 30.6068 |
JSE_CONG | 0.0010 | 0.9452 | 1.0010 | 18.2450 |
JSE_HEAL | 0.9840 | 0.4881 | 62.5127 | 1.9535 |
JSE_CONS | 0.4385 | 0.9663 | 1.7809 | 29.6648 |
JSE_TELCOM | 0.4875 | 0.5808 | 1.9514 | 2.3854 |
JSE_UT | 8.64 × 10−0 | 0.9699 | 1.0001 | 33.2474 |
JSE_TECH | 0.8982 | 0.8909 | 9.8226 | 9.1641 |
JSE_OG | 0.9776 | 0.2794 | 44.7201 | 1.3877 |
JSE_BM | 0.9581 | 7.21 × 10−1 | 23.8748 | 1.0000 |
JSE_ALSI | JSE_FIN | JSE_IND | JSE_CONG | JSE_HEAL | JSE_CONS | JSE_TELCOM | JSE_UT | JSE_TECH | JSE_OG | JSE_BM | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: Bull market | |||||||||||
C | −1.2041 | −1.5773 | 0.8934 *** | 1.1754 *** | 0.9816 *** | 1.4753 *** | 1.8695 ** | 0.6564 * | 1.6071 *** | 8.7787 *** | 0.7955 *** |
SENT | −0.0229 | 0.6698 | −0.3644 ** | −0.2661 | −0.9427 | −0.0648 | 0.8052 * | −0.1044 | −0.6951 * | 5.3586 *** | 0.3983 *** |
CPI | −0.0380 | −0.0267 | −0.0458 | −0.0502 | −0.0459 | −0.0666 | −0.0015 | −0.0134 | 0.0346 | −0.5811 *** | 0.0260 *** |
ST_INT | −0.1434 | 0.0091 | −0.0574 ** | −0.0471 | −0.0659 | −0.1304 ** | −0.1538 | −0.0370 | −0.0606 | 1.0649 *** | 0.1240 *** |
LT_INT | −0.3597 | 0.1176 | −0.1515 | −0.1077 | −0.1795 | −0.2650 | 0.0470 | −0.1521 | 0.2213 | −1.6636 *** | −0.0285 *** |
GDP | −0.3349 | 0.0030 | −0.0183 | −0.0253 | −0.0285 | −0.0744 | 0.0871 | −0.0707 | 0.2204 ** | 1.5377 *** | 0.0814 *** |
1.8811 *** | 2.0775 *** | 1.4401 *** | 1.6421 *** | 1.6933 *** | 1.7487 *** | 1.5338 *** | 1.6947 *** | 1.3769 *** | 0.7587 *** | −4.6490 *** | |
Panel B: Bear market | |||||||||||
C | 1.0975 *** | 0.8675 *** | −8.8186 *** | −0.3384 *** | −1.4482 *** | −5.9343 *** | −1.5371 | −1.9975 *** | −0.5645 | −0.0056 | 0.5266 |
SENT | −0.2659 * | −0.4053 ** | 3.3646 *** | 0.0470 *** | −0.2768 *** | 0.4490 | −1.9423 ** | 7.9656 *** | 0.1897 | −0.5816 | 0.0431 |
CPI | −0.0629 | −0.0542 | 1.3939 *** | −0.0299 *** | −2.7809 *** | −0.1298 | −0.0122 | −0.3313 *** | −0.2470 | −0.1410 | −0.1152 * |
ST_INT | −0.0740 | −0.0415 | −0.5270 *** | −0.1267 *** | −1.5476 *** | −0.3237 | −0.0449 | −0.4700 *** | −0.0282 | 0.0776 | −0.0941 |
LT_INT | 0.0063 | −0.1956 * | 2.2951 *** | 0.4712 *** | 1.0954 *** | 3.6073 *** | 0.0051 | 3.1161 *** | −0.3549 * | 0.2092 | −0.1690 |
GDP | 0.0302 | 0.0019 | −1.1801 *** | −0.1894 *** | 2.3106 *** | 2.0818 *** | −0.2196 | 1.7346 *** | 0.0178 | −0.0458 | −0.0067 |
1.3087 *** | 1.2714 *** | −3.5565 *** | −4.1781 *** | −3.8005 *** | 0.8913 *** | 1.9720 *** | −4.6473 *** | 2.2493 *** | 2.2954 *** | 1.9828 *** | |
Panel C: Diagnostic test | |||||||||||
LM-STAT | 0.4142 | 0.2774 | 0.8812 | 0.6299 | 0.8323 | 0.7033 | 0.0536 | 1.4521 | 0.0364 | 1.5770 | 2.0826 |
p-Value | 0.6613 | 0.7580 | 0.3409 | 0.7043 | 0.9210 | 0.1844 | 0.9478 | 0.2362 | 0.9643 | 0.2089 | 0.1270 |
DW-STAT | 2.0987 | 2.0778 | 2.0934 | 2.3138 | 2.0909 | 2.1521 | 2.0643 | 2.0492 | 2.0298 | 2.0896 | 2.1325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moodley, F.; Ferreira-Schenk, S.; Matlhaku, K. The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa. Int. J. Financial Stud. 2025, 13, 70. https://doi.org/10.3390/ijfs13020070
Moodley F, Ferreira-Schenk S, Matlhaku K. The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa. International Journal of Financial Studies. 2025; 13(2):70. https://doi.org/10.3390/ijfs13020070
Chicago/Turabian StyleMoodley, Fabian, Sune Ferreira-Schenk, and Kago Matlhaku. 2025. "The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa" International Journal of Financial Studies 13, no. 2: 70. https://doi.org/10.3390/ijfs13020070
APA StyleMoodley, F., Ferreira-Schenk, S., & Matlhaku, K. (2025). The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa. International Journal of Financial Studies, 13(2), 70. https://doi.org/10.3390/ijfs13020070