Management’s Discretionary Assessments of Goodwill Impairments—Evidence from STOXX Europe 600
Abstract
:1. Introduction
2. Accounting Treatment of Goodwill in Accordance with IFRS
3. Relevant Studies and Hypothesis Development
4. Data and Descriptive Statistics
4.1. Data
4.2. Descriptive Statistics
5. Methodology
5.1. Elaboration on the Variables
5.2. Statistics on the Independent Variables
5.3. Two-Way Fixed-Effects Model
5.4. Tobit Model
5.5. Logit Model
6. Results
6.1. Fixed-Effects Model
6.2. Tobit and Logit Regressions
6.3. Robustness Test
6.4. Discussion
7. Conclusions, Limitations, and Implications
7.1. Conclusions
7.2. Limitations
7.3. Implications
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Dependent Variables | Definition | Description |
GWIMPA% | Impairment of goodwill in year (t) as a share of total assets previous year (t − 1) | |
GWIMP | Dichotomous variable equal to 1 if the company reports GI, and 0 if no impairments. | |
Independent variables | Definition | Description |
ROA | Net income year (t) as share of total assets year (t − 1) | |
ΔREV | Change in turnover between year (t) and (t − 1) as a share of total assets year (t − 1) | |
ΔOCFA | Change in cash flow from operating activities between year (t) and (t − 1) as a proportion of total assets year (t − 1) | |
GWA | Net booked goodwill year (t − 1) as a share of total assets year (t − 1) | |
P/B | Price-book. Market cap. per share year (t) as share of booked equity per share year (t) | |
DEBT | Total debt year (t − 1) as a share of total assets year (t − 1) | |
BATH | Dichotomous variable equal to 1 if operating profit in year (t) is below 0, and the change in operating profit is lower than the industry median. | |
SMOOTH | Dichotomous variable equal to 1 if operating profit in year (t) is above 0, and the change in operating profit is higher than the industry median | |
YEAR | Dichotomous variable equal to 1 if the year is the reference year, 0 otherwise. |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2006 | ||||||||||||
2007 | 0.372 | |||||||||||
2008 | 0.027 ** | 0.033 ** | ||||||||||
2009 | 0.207 | 0.117 | 0.024 ** | |||||||||
2010 | 0.097 * | 0.021 ** | 0.005 *** | 0.795 | ||||||||
2011 | 0.936 | 0.701 | 0.069 * | 0.076 * | 0.008 *** | |||||||
2012 | 0.289 | 0.147 | 0.022 ** | 0.562 | 0.672 | 0.063 * | ||||||
2013 | 0.103 | 0.035 ** | 0.008 *** | 0.974 | 0.705 | 0.013 ** | 0.425 | |||||
2014 | 0.501 | 0.299 | 0.041 ** | 0.467 | 0.515 | 0.368 | 0.717 | 0.351 | ||||
2015 | 0.556 | 0.358 | 0.067 * | 0.534 | 0.557 | 0.441 | 0.755 | 0.442 | 0.992 | |||
2016 | 0.617 | 0.384 | 0.051 * | 0.410 | 0.381 | 0.478 | 0.596 | 0.285 | 0.885 | 0.881 | ||
2017 | 0.227 | 0.081 * | 0.012 ** | 0.647 | 0.688 | 0.051 * | 0.917 | 0.469 | 0.635 | 0.662 | 0.472 | |
2018 | 0.180 | 0.069 * | 0.010 *** | 0.830 | 0.957 | 0.029 ** | 0.622 | 0.767 | 0.477 | 0.521 | 0.315 | 0.606 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2006 | ||||||||||||
2007 | 0.076 * | |||||||||||
2008 | 0.002 *** | 0.008 *** | ||||||||||
2009 | 0.446 | 0.209 | 0.023 ** | |||||||||
2010 | 0.373 | 0.074 * | 0.007 *** | 0.677 | ||||||||
2011 | 0.730 | 0.571 | 0.027 ** | 0.185 | 0.055 * | |||||||
2012 | 0.421 | 0.154 | 0.013 ** | 0.801 | 0.768 | 0.087 * | ||||||
2013 | 0.348 | 0.106 | 0.010 *** | 0.885 | 0.635 | 0.069 * | 0.862 | |||||
2014 | 0.997 | 0.559 | 0.047 ** | 0.409 | 0.536 | 0.784 | 0.424 | 0.334 | ||||
2015 | 0.868 | 0.708 | 0.089 * | 0.385 | 0.444 | 0.970 | 0.366 | 0.312 | 0.838 | |||
2016 | 0.991 | 0.556 | 0.046 ** | 0.417 | 0.489 | 0.798 | 0.399 | 0.329 | 0.988 | 0.864 | ||
2017 | 0.655 | 0.222 | 0.016 ** | 0.518 | 0.648 | 0.283 | 0.479 | 0.361 | 0.673 | 0.541 | 0.625 | |
2018 | 0.532 | 0.183 | 0.013 ** | 0.648 | 0.941 | 0.202 | 0.705 | 0.581 | 0.533 | 0.444 | 0.461 | 0.668 |
Inverse Chi-Squared | Inverse Normal | Inverse Logit | Modified Inverse Chi-Squared | |||||
---|---|---|---|---|---|---|---|---|
Variables | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value |
ROA | 2533.126 | 0.000 | −21.066 | 0.000 | −28.165 | 0.000 | 40.919 | 0.000 |
ΔREV | 4556.816 | 0.000 | −43.548 | 0.000 | −59.046 | 0.000 | 88.685 | 0.000 |
ΔOCFA | 8619.648 | 0.000 | −73.351 | 0.000 | −114.609 | 0.000 | 186.301 | 0.000 |
GWA | 1920.449 | 0.000 | −7.542 | 0.000 | −14.816 | 0.000 | 25.337 | 0.000 |
P/B | 1473.421 | 0.000 | −9.055 | 0.000 | −11.477 | 0.000 | 16.066 | 0.000 |
DEBT | 2639.063 | 0.000 | −15.338 | 0.000 | −26.013 | 0.000 | 42.026 | 0.000 |
Year | Basic Materials | Consumer Cyclicals | Consumer Non-Cyclicals | Energy | Healthcare | Industrials | Technology | Telecom. Services | Utilities | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied Resources, Chemicals, Mineral Resources | Automobiles and Auto Parts, Cyclical Consumer Products, Cyclical Consumer Services, Retailers | Food and Beverages, Food and Drug Retailing, Personal and Household Products and Services | Energy—Fossil Fuels, Renewable Energy | Healthcare Services and Equipment, Pharmaceuticals and Medical Research | Industrial and Commercial Services, Industrial Conglomerates, Industrial Goods, Transportation | Software and IT Services, Technology Equipment | Telecommunications | Electric Utilities and IPPs, Multiline Utilities, Natural Gas Utilities, Water and Related Utilities | |||||||||||||||||||
(1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | |
4% | 8% | 11% | 1% | 0% | 17% | 0% | 43% | 15% | |||||||||||||||||||
2006 | 32% | 1% | 1% | 25% | 1% | 3% | 32% | 0% | 1% | 11% | 0% | 0% | 11% | 0% | 0% | 29% | 0% | 1% | 17% | 0% | 0% | 41% | 15% | 93% | 28% | 1% | 1% |
2007 | 35% | 2% | 5% | 18% | 0% | 3% | 18% | 0% | 1% | 24% | 0% | 0% | 10% | 0% | 0% | 28% | 0% | 2% | 6% | 0% | 0% | 53% | 8% | 89% | 5% | 0% | 0% |
2008 | 39% | 9% | 29% | 26% | 6% | 33% | 32% | 1% | 5% | 19% | 1% | 1% | 10% | 0% | 1% | 34% | 1% | 9% | 23% | 1% | 1% | 37% | 0% | 4% | 26% | 5% | 17% |
2009 | 37% | 2% | 7% | 25% | 2% | 17% | 24% | 0% | 1% | 23% | 6% | 7% | 10% | 0% | 0% | 27% | 1% | 10% | 23% | 4% | 5% | 37% | 4% | 53% | 20% | 0% | 0% |
2010 | 19% | 0% | 2% | 23% | 1% | 9% | 21% | 0% | 9% | 17% | 0% | 0% | 0% | 0% | 0% | 24% | 1% | 20% | 13% | 0% | 1% | 32% | 2% | 39% | 29% | 1% | 20% |
2011 | 20% | 7% | 18% | 15% | 1% | 3% | 20% | 1% | 7% | 18% | 0% | 0% | 7% | 1% | 4% | 27% | 1% | 4% | 20% | 4% | 3% | 42% | 9% | 56% | 48% | 1% | 5% |
2012 | 29% | 11% | 31% | 24% | 1% | 3% | 24% | 0% | 0% | 21% | 0% | 0% | 13% | 0% | 1% | 19% | 1% | 6% | 0% | 0% | 0% | 35% | 7% | 47% | 38% | 3% | 11% |
2013 | 11% | 0% | 1% | 17% | 1% | 4% | 19% | 0% | 4% | 8% | 20% | 22% | 12% | 0% | 1% | 14% | 1% | 6% | 11% | 0% | 0% | 20% | 5% | 37% | 24% | 5% | 25% |
2014 | 13% | 1% | 3% | 23% | 1% | 6% | 7% | 1% | 10% | 27% | 7% | 12% | 7% | 1% | 4% | 15% | 0% | 3% | 7% | 3% | 8% | 14% | 5% | 50% | 29% | 1% | 4% |
2015 | 20% | 3% | 14% | 22% | 1% | 11% | 11% | 0% | 3% | 27% | 6% | 10% | 3% | 0% | 0% | 16% | 1% | 10% | 7% | 0% | 1% | 4% | 0% | 0% | 32% | 10% | 52% |
2016 | 19% | 0% | 4% | 26% | 3% | 46% | 9% | 0% | 4% | 12% | 1% | 3% | 12% | 0% | 1% | 14% | 0% | 5% | 13% | 0% | 2% | 30% | 1% | 21% | 19% | 2% | 15% |
2017 | 13% | 1% | 13% | 24% | 0% | 2% | 13% | 1% | 28% | 4% | 0% | 0% | 5% | 0% | 8% | 15% | 1% | 9% | 13% | 2% | 11% | 17% | 1% | 18% | 26% | 1% | 11% |
2018 | 6% | 0% | 1% | 20% | 1% | 24% | 10% | 0% | 5% | 4% | 0% | 0% | 7% | 1% | 17% | 16% | 0% | 6% | 9% | 0% | 0% | 30% | 2% | 33% | 17% | 2% | 14% |
ROA | ΔREV | ΔOCFA | GWA | P/B | DEBT | BATH | SMO * | Y2006 | Y2007 | Y2008 | Y2009 | Y2010 | Y2011 | Y2012 | Y2013 | Y2014 | Y2015 | Y2016 | Y2017 | Y2018 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ROA | 1 | ||||||||||||||||||||
ΔREV | 0.279 | 1 | |||||||||||||||||||
ΔOCFA | 0.277 | 0.34 | 1 | ||||||||||||||||||
GWA | 0.003 | −0.002 | 0.001 | 1 | |||||||||||||||||
P/B | 0.121 | 0.034 | 0.016 | 0.036 | 1 | ||||||||||||||||
DEBT | −0.292 | −0.02 | −0.039 | −0.004 | 0.016 | 1 | |||||||||||||||
BATH | −0.325 | −0.071 | −0.081 | −0.04 | −0.03 | 0.008 | 1 | ||||||||||||||
SMO * | 0.248 | 0.173 | 0.163 | −0.01 | 0.044 | −0.037 | −0.178 | 1 | |||||||||||||
Y2006 | 0.059 | 0.1 | 0.026 | −0.038 | 0.003 | 0.018 | −0.018 | 0.009 | 1 | ||||||||||||
Y2007 | 0.082 | 0.066 | 0.039 | −0.031 | 0.009 | 0.016 | −0.03 | 0.005 | −0.072 | 1 | |||||||||||
Y2008 | −0.017 | 0.061 | −0.025 | −0.014 | 0.003 | 0.051 | 0.041 | −0.001 | −0.073 | −0.076 | 1 | ||||||||||
Y2009 | −0.069 | −0.12 | 0.069 | −0.006 | −0.04 | 0.021 | 0.039 | 0.003 | −0.074 | −0.077 | −0.078 | 1 | |||||||||
Y2010 | 0.016 | 0.02 | −0.031 | 0.003 | −0.024 | −0.01 | −0.015 | 0 | −0.075 | −0.078 | −0.079 | −0.08 | 1 | ||||||||
Y2011 | 0.016 | 0.041 | −0.068 | 0.004 | −0.021 | −0.008 | 0.002 | 0.007 | −0.076 | −0.079 | −0.08 | −0.081 | −0.082 | 1 | |||||||
Y2012 | −0.017 | −0.008 | −0.002 | 0.007 | −0.015 | −0.011 | 0.006 | −0.006 | −0.076 | −0.079 | −0.08 | −0.081 | −0.082 | −0.083 | 1 | ||||||
Y2013 | −0.016 | −0.041 | −0.003 | 0.004 | 0.006 | −0.023 | −0.008 | 0.006 | −0.077 | −0.079 | −0.081 | −0.082 | −0.082 | −0.083 | −0.084 | 1 | |||||
Y2014 | −0.015 | −0.049 | −0.022 | 0.001 | 0.03 | −0.008 | 0.016 | 0 | −0.078 | −0.081 | −0.083 | −0.083 | −0.084 | −0.085 | −0.085 | −0.086 | 1 | ||||
Y2015 | −0.025 | −0.02 | 0.041 | 0.012 | 0.04 | −0.006 | 0.028 | −0.006 | −0.079 | −0.081 | −0.083 | −0.084 | −0.085 | −0.086 | −0.086 | −0.086 | −0.088 | 1 | |||
Y2016 | −0.013 | −0.053 | −0.014 | 0.013 | −0.004 | −0.002 | −0.007 | −0.01 | −0.079 | −0.082 | −0.084 | −0.085 | −0.085 | −0.086 | −0.087 | −0.087 | −0.089 | −0.089 | 1 | ||
Y2017 | 0.007 | 0.016 | −0.003 | 0.017 | 0.001 | −0.019 | −0.038 | −0.002 | −0.08 | −0.083 | −0.084 | −0.085 | −0.086 | −0.087 | −0.087 | −0.088 | −0.09 | −0.09 | −0.091 | 1 | |
Y2018 | 0.001 | −0.001 | −0.002 | 0.022 | 0.01 | −0.012 | −0.014 | −0.001 | −0.081 | −0.084 | −0.085 | −0.086 | −0.087 | −0.088 | −0.088 | −0.089 | −0.091 | −0.091 | −0.092 | −0.093 | 1 |
Percentiles | Impairment Rates | ||
---|---|---|---|
1% | 0.01% | Firm years with IB Goodwill | 4928 |
5% | 0.05% | Firm years with GI | 951 |
10% | 0.10% | ||
25% | 0.42% | Average impairment rates | 9.02% |
50% | 1.68% | ||
75% | 7.16% | SD | 36.44% |
90% | 20.19% | Variance | 13.28% |
95% | 36.62% | ||
99% | 94.80% |
Percentile Firm Years | Equity Share Incl. Goodwill | Equity Share Excl. Goodwill | Firm Year | Obs. | Equity Share Incl. Goodwill | Equity Share Excl. Goodwill |
---|---|---|---|---|---|---|
1% | −5.1% | −55.8% | Average | |||
5% | 12.4% | −24.3% | Firm years without GI | 4319 | 39.4% | 23.1% |
10% | 18.2% | −9.1% | Firm years with GI | 1038 | 35.4% | 18.0% |
25% | 27.1% | 8.1% | ||||
50% | 38.6% | 24.8% | Median | |||
75% | 50.5% | 41.7% | Firm years without GI | 4319 | 38.8% | 24.6% |
90% | 63.1% | 57.8% | Firm years with GI | 1038 | 35.1% | 19.3% |
95% | 70.5% | 66.7% | ||||
99% | 85.0% | 83.5% | ||||
Aver. | 39.3% | 23.6% |
1 | GI is presented at the company level, and not at the level of CGUs, owing to lack of data for CGUs. According to IAS 36, GI must occur at the CGU level. Previous research adopts the same approach as this study. |
2 | All variables have a low or very low correlation with each other (0.340 is the highest). Hence, there is little degree of linear covariation between the independent variables, and multicollinearity does not seem to be a problem in our regression models. |
References
- Abughazaleh, Naser M., Osama M. Al-Hares, and Clare Roberts. 2011. Accounting discretion in goodwill impairments: UK evidence. Journal of International Financial Management and Accounting 22: 165–204. [Google Scholar] [CrossRef]
- Amel-Zadeh, A., Martin Glaum, and Thorsten Sellhorn. 2021. Empirical Goodwill Research: Insights, Issues, and Implications for Standard Setting and Future Research. European Accounting Review 32: 415–46. [Google Scholar] [CrossRef]
- André, Paul, Andrei Filip, and Luc Paugam. 2016. Examining the patterns of goodwill impairments in Europe and the US. Accounting in Europe 13: 329–52. [Google Scholar] [CrossRef]
- Beatty, Anne, and Joseph Weber. 2006. Accounting discretion in fair value estimates: An examination of SFAS 142 goodwill impairments. Journal of Accounting Research 44: 257–88. [Google Scholar] [CrossRef]
- Bepari, Md Khokan, and Abu Taher Mollik. 2017. Regime change in the accounting for goodwill—Goodwill write-offs and the value relevance of older goodwill. International Journal of Accounting & Information Management 25: 43–69. [Google Scholar] [CrossRef]
- Bepari, Md Khokan, Sheikh Rahman, and Abu Taher Mollik. 2014. Firms’ compliance with the disclosure requirements of IFRS for goodwill impairment testing. Journal of Accounting and Organizational Change 10: 116–49. [Google Scholar] [CrossRef]
- Bostwick, Eric D., Kevin Krieger, and Sherwood Lane Lambert. 2016. Relevance of goodwill impairments to cash flow prediction and forecasting. Journal of Accounting, Auditing and Finance 31: 339–64. [Google Scholar] [CrossRef]
- Chalmers, Keryn G., Jayne M. Godfrey, and John C. Webster. 2011. Does a goodwill impairment regime better reflect the underlying economic attributes of goodwill? Accounting and Finance 51: 634–60. [Google Scholar] [CrossRef]
- European Securities and Markets Authority (ESMA). 2013. ESMA Report—European Enforcers Review of Impairment of Goodwill and Other Intangible Assets in the IFRS Financial Statements. Available online: https://www.esma.europa.eu/sites/default/files/library/2015/11/2013-02.pdf (accessed on 10 February 2020).
- Ferramosca, Silvia, and Marco Allegrini. 2021. Impairment or amortization of goodwill? An analysis of CFO perceptions of goodwill accounting. European Management Journal 39: 816–28. [Google Scholar] [CrossRef]
- Francis, Jennifer, J. Douglas Hanna, and Linda Vincent. 1996. Causes and effects of discretionary asset write-offs. Journal of Accounting Research 34: 117–34. [Google Scholar] [CrossRef]
- Glaum, Martin, Wayne R. Landsman, and Sven Wyrwa. 2018. Goodwill Impairment: The effect of public enforcement and monitoring by institutional investors. The Accounting Review 93: 149–90. [Google Scholar] [CrossRef]
- Gros, Marius, and Sebastian Koch. 2020. Discretionary goodwill impairment losses in Europe. Journal of Applied Accounting Research 21: 106–24. [Google Scholar] [CrossRef]
- Han, Hongwen, Jiali Jenna Tang, and Qingquan Tang. 2021. Goodwill impairment, securities analysts, and information transparency. European Accounting Review 30: 767–99. [Google Scholar] [CrossRef]
- Hausman, Jerry A. 1978. Specification tests in econometrics. Econometrica 46: 1251–71. [Google Scholar] [CrossRef] [Green Version]
- IFRS Foundation. 2015. Post-Implementation Review of IFRS 3 Business Combinations. Available online: https://www.ifrs.org/-/media/project/pir-ifrs-3/published-documents/pir-ifrs-3-report-feedback-statement.pdf (accessed on 10 February 2020).
- International Accounting Standards Board (IASB). 2020. Business Combinations—Disclosures, Goodwill and Impairment. Available online: https://cdn.ifrs.org/-/media/project/goodwill-and-impairment/goodwill-and-impairment-dp-march-2020.pdf (accessed on 10 February 2020).
- Jarva, Henry. 2009. Do firms manage fair value estimates? An examination of SFAS 142 goodwill impairments. Journal of Business Finance and Accounting 36: 1059–86. [Google Scholar] [CrossRef]
- Kirschenheiter, Michael, and Nahum D. Melumad. 2002. Can “big bath” and earnings smoothing co-exist as equilibrium financial reporting strategies? Journal of Accounting Research 40: 761–96. [Google Scholar] [CrossRef]
- Kjærland, Frode, Fredrik Kosberg, and Mathias Misje. 2021. Accrual earnings management in response to an oil price shock. Journal of Commodity Markets. [Google Scholar] [CrossRef]
- Knauer, Thorsten, and Arnt Wöhrmann. 2016. Market reaction to goodwill impairments. European Accounting Review 25: 421–49. [Google Scholar] [CrossRef]
- Maddala, Gangadharrao S. 1991. A perspective on the use of limited-dependent and qualitative variables models in accounting research. Accounting Review 66: 788–807. [Google Scholar]
- Nagar, Neerav, and Kaustav Sen. 2017. Do financially distressed firms misclassify core expenses? Accounting Research Journal 30: 205–23. [Google Scholar] [CrossRef]
- Ramanna, Karthik, and Ross L. Watts. 2012. Evidence on the use of unverifiable estimates in required goodwill impairment. Review of Accounting Studies 17: 749–80. [Google Scholar] [CrossRef] [Green Version]
- Rees, Lynn, Susan Gill, and Richard Gore. 1996. An investigation of asset write-downs and concurrent abnormal accruals. Journal of Accounting Research 34: 157–69. [Google Scholar] [CrossRef]
- Riedl, Edward J. 2004. An examination of long-lived asset impairments. Accounting Review 79: 823–52. [Google Scholar] [CrossRef]
- Scott, William. R. 2015. Financial Accounting Theory, 7th ed. Toronto: Pearson. [Google Scholar]
- Stoxx.com. 2020. STOXX Europe 600. Available online: https://www.stoxx.com/index-details?symbol=SXXP (accessed on 10 February 2020).
- Watts, Ross L. 2003. Conservatism in accounting. Part I: Explanations and implications. Accounting Horizons 17: 207. [Google Scholar] [CrossRef] [Green Version]
- Zang, Yoonseok. 2008. Discretionary behavior with respect to the adoption of SFAS no. 142 and the behavior of security prices. Review of Accounting and Finance 7: 38–68. [Google Scholar] [CrossRef]
Firm-Year Observations | Firms | |
---|---|---|
Stoxx Europe 600 Index (retrieved active firms as of 15 March 2020 from Thomson Reuters Datastream) for fiscal years 2005–2018 | 9046 | 600 |
Observations related to the financial industry | −2152 | −143 |
Observations of firms without IFRS reporting | −884 | −7 |
Observations with missing data and inactive fiscal years | −342 | −1 |
Final sample | 5668 | 449 |
Number of firms with goodwill in the balance sheet | 5357 | 441 |
Number of firms with goodwill impairments | 1038 | 284 |
Number of firms with goodwill impairments of capitalized goodwill (t − 1) | 951 | 272 |
Year | Sample | Firms with GW in BS Year (t) | Firms with GI | Share of Firms with GI of GW (t − 1) | Share of Firms with 75% av GI | GW % of Eq | GW% of TA | GI in % of GW (t − 1) | GI in % of TA (t − 1) |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
2005 | 357 | 328 | 78 | 24% | 10% | 43% | 14% | - | - |
2006 | 376 | 346 | 84 | 24% | 1% | 40% | 13% | 5.5% | 0.8% |
2007 | 382 | 355 | 77 | 22% | 1% | 41% | 13% | 2.5% | 0.3% |
2008 | 383 | 360 | 100 | 28% | 12% | 47% | 14% | 2.5% | 0.3% |
2009 | 389 | 367 | 90 | 25% | 9% | 47% | 14% | 1.8% | 0.3% |
2010 | 395 | 374 | 73 | 20% | 12% | 43% | 14% | 0.9% | 0.1% |
2011 | 398 | 379 | 82 | 22% | 9% | 42% | 14% | 3.2% | 0.5% |
2012 | 401 | 382 | 82 | 21% | 9% | 42% | 14% | 2.7% | 0.4% |
2013 | 409 | 391 | 57 | 15% | 5% | 39% | 13% | 2.1% | 0.3% |
2014 | 422 | 401 | 60 | 15% | 8% | 41% | 13% | 1.5% | 0.2% |
2015 | 431 | 409 | 64 | 16% | 14% | 42% | 13% | 1.6% | 0.2% |
2016 | 437 | 416 | 70 | 17% | 13% | 45% | 14% | 0.9% | 0.1% |
2017 | 441 | 422 | 63 | 15% | 11% | 44% | 14% | 0.9% | 0.1% |
2018 | 447 | 427 | 58 | 14% | 12% | 45% | 15% | 0.7% | 0.1% |
Total | 5668 | 5357 | 1038 | - | - | 43% | 14% | - | - |
Industry (TRBC) | Firm Years | Firm Years with GW | Firm Years with GI | Firm Years with GI in % av Firm-Year Observations | GW in % of Total Sample GW | GI in % of Total Sample GI | GI in % of GW (t − 1) | GW in % of Eq | GW in % of TA |
---|---|---|---|---|---|---|---|---|---|
n | 5668 | 5357 | 1038 | 1038 | 5357 | 1038 | 4928 | 5357 | 5357 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
Basic Materials | 12% | 12% | 13% | 21% | 8% | 11% | 2.8% | 27% | 11% |
Consumer Cyclicals | 20% | 19% | 21% | 20% | 14% | 10% | 1.3% | 38% | 11% |
Consumer Non-Cyclicals | 11% | 11% | 10% | 18% | 19% | 5% | 0.5% | 77% | 26% |
Energy | 6% | 6% | 5% | 14% | 3% | 4% | 3.1% | 7% | 3% |
Healthcare | 11% | 11% | 5% | 8% | 12% | 2% | 0.4% | 59% | 25% |
Industrials | 24% | 24% | 26% | 20% | 15% | 6% | 0.8% | 61% | 14% |
Technology | 7% | 7% | 4% | 12% | 3% | 2% | 1.2% | 52% | 25% |
Telecom. Services | 5% | 5% | 8% | 29% | 17% | 48% | 5.2% | 77% | 25% |
Utilities | 6% | 5% | 7% | 23% | 8% | 12% | 2.6% | 38% | 8% |
Total | 100% | 100% | 100% | - | 100% | - | - | - | - |
Sample (n = 5668) Share | GI. (n = 1038) Share | Not GI (n = 4630) Share | Test of Differences (Impairments versus No Impairments) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Aver. | Med. | SE | Aver. | Med. | SE | Aver. | Med. | SE | Aver. p-Value | Median p-Value |
PB | 3.354 | 2.440 | 9.770 | 2.629 | 2.090 | 3.181 | 3.540 | 2.520 | 11.073 | 0.010 *** | 0.000 *** |
GWA | 0.170 | 0.137 | 0.146 | 0.192 | 0.163 | 0.134 | 0.165 | 0.129 | 0.148 | 0.000 *** | 0.000 *** |
ΔREV | 0.066 | 0.041 | 0.219 | 0.046 | 0.027 | 0.168 | 0.071 | 0.044 | 0.228 | 0.002 *** | 0.000 *** |
ΔOCFA | 0.011 | 0.007 | 0.062 | 0.006 | 0.004 | 0.040 | 0.012 | 0.008 | 0.066 | 0.012 ** | 0.001 *** |
ROA | 0.087 | 0.070 | 0.123 | 0.055 | 0.053 | 0.081 | 0.095 | 0.075 | 0.130 | 0.000 *** | 0.000 *** |
DEBT | 0.607 | 0.614 | 0.183 | 0.646 | 0.649 | 0.171 | 0.599 | 0.608 | 0.185 | 0.000 *** | 0.000 *** |
Sample n = 5668 | GI n = 1038 | Not GI n = 4630 | Test of Differences (Impairments versus No Impairments) | ||||
---|---|---|---|---|---|---|---|
n | 5668 | 1038 | 4630 | ||||
Variable | Obs. | % | Obs. | % | Obs. | % | p-Value |
BATH | 206 | 3.6 | 89 | 8.6 | 117 | 2.5 | 0.000 *** |
SMOOTH | 2420 | 42.7 | 370 | 35.6 | 2050 | 44.3 | 0.000 *** |
Y2018 | 446 | 7.9 | 58 | 5.6 | 388 | 8.4 | 0.003 *** |
Y2017 | 441 | 7.8 | 63 | 6.1 | 378 | 8.2 | 0.023 ** |
Y2016 | 437 | 7.7 | 70 | 6.7 | 367 | 7.9 | 0.197 |
Y2015 | 431 | 7.6 | 64 | 6.2 | 367 | 7.9 | 0.053 * |
Y2014 | 422 | 7.4 | 60 | 5.8 | 362 | 7.8 | 0.024 ** |
Y2013 | 409 | 7.2 | 57 | 5.5 | 352 | 7.6 | 0.018 ** |
Y2012 | 401 | 7.1 | 82 | 7.9 | 319 | 6.9 | 0.251 |
Y2011 | 398 | 7.0 | 82 | 7.9 | 316 | 6.8 | 0.221 |
Y2010 | 395 | 7.0 | 73 | 7.0 | 322 | 7.0 | 0.929 |
Y2009 | 389 | 6.9 | 90 | 8.7 | 299 | 6.5 | 0.011 ** |
Y2008 | 383 | 6.8 | 100 | 9.6 | 283 | 6.1 | 0.000 *** |
Y2007 | 382 | 6.7 | 77 | 7.4 | 305 | 6.6 | 0.335 |
Y2006 | 376 | 6.6 | 84 | 8.1 | 292 | 6.3 | 0.037 ** |
Y2005 | 357 | 6.3 | 78 | 7.5 | 279 | 6.0 | 0.074 * |
Fixed Effects (within) | Random Effects (GLS) | |||||
---|---|---|---|---|---|---|
Variables | Coef. | SE | Coef. | SE | Coef. | SE |
ROA | −0.0649 *** | 0.020 | −0.044 ** | 0.017 | −0.029 *** | 0.010 |
ΔREV | 0.004 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 |
ΔOCFA | 0.017 ** | 0.007 | 0.016 *** | 0.005 | 0.014 *** | 0.004 |
GWA | 0.021 * | 0.012 | 0.023 * | 0.012 | 0.010 *** | 0.003 |
P/B | 9.16 × 10−6 | 0.00001 | 6.33 × 10−6 | 0.00001 | 0.00001 | 0.00002 |
DEBT | 0.008 * | 0.005 | −0.002 | 0.002 | ||
BATH | 0.017 *** | 0.004 | 0.018 *** | 0.004 | ||
SMOOTH | −0.0007 ** | 0.0003 | −0.0006 ** | 0.0003 | ||
YEAR2006 | 0.002 * | 0.001 | 0.001 | 0.0009 | 0.0009 | 0.0007 |
YEAR2007 | 0.002 ** | 0.001 | 0.002 * | 0.0009 | 0.001 * | 0.0006 |
YEAR2008 | 0.005 *** | 0.002 | 0.004 ** | 0.001 | 0.004 *** | 0.001 |
YEAR2009 | 0.0002 | 0.0008 | −0.0002 | 0.0008 | 0.0005 | 0.0007 |
YEAR2010 | 0.0001 | 0.0005 | 0.0000269 | 0.0005 | 0.00004 | 0.0004 |
YEAR2011 | 0.002 ** | 0.0006 | 0.001 ** | 0.0006 | 0.001 ** | 0.0006 |
YEAR2012 | 0.0003 | 0.0005 | 0.0002 | 0.0005 | 0.0005 | 0.0005 |
YEAR2013 | −0.0002 | 0.0005 | −0.0001 | 0.0005 | −0.00004 | 0.0005 |
YEAR2014 | 0.0008 | 0.0008 | 0.0005 | 0.0008 | 0.0006 | 0.0007 |
YEAR2015 | 0.0008 | 0.0009 | 0.0005 | 0.0008 | 0.0008 | 0.0008 |
YEAR2016 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | 0.0008 | 0.0007 |
YEAR2017 | −0.00006 | 0.0004 | 0.0002 | 0.0004 | 0.0002 | 0.0004 |
Constant | 0.002 | 0.002 | −0.005 | 0.003 | 0.002 * | 0.002 |
R-Squared | ||||||
Within | 0.099 | 0.155 | 0.145 | |||
Between | 0.054 | 0.048 | 0.077 | |||
Overall | 0.065 | 0.110 | 0.137 | |||
Rho | 0.266 | 0.289 | 0.047 | |||
No of obs. | 4586 | 4586 | 4586 | |||
No of groups | 406 | 406 | 406 |
Logistic Regression (Logit) | Tobit | |||||
---|---|---|---|---|---|---|
FE | RE | RE | ||||
Variables | Coef. | SE | Coef. | SE | Coef. | SE |
ROA | −5.001 *** | 1.162 | −5.2922 *** | 1.009 | −0.135 *** | 0.013 |
ΔREV | −0.245 | 0.367 | −0.333 | 0.325 | 0.002 | 0.004 |
ΔOCFA | 1.124 | 1.213 | 1.014 | 1.139 | 0.031 * | 0.016 |
GWA | 0.627 | 1.041 | 1.058 * | 0.605 | 0.035 *** | 0.008 |
P/B | −0.004 | 0.009 | −0.007 | 0.011 | −0.00004 | 0.0001 |
DEBT | 1.913 *** | 0.723 | 1.553 *** | 0.489 | 0.017 *** | 0.006 |
BATH | 0.967 *** | 0.249 | 1.118 *** | 0.245 | 0.027 *** | 0.003 |
SMOOTH | −0.107 | 0.104 | −0.115 | 0.102 | −0.002 | 0.001 |
YEAR2006 | 1.103 *** | 0.246 | 1.175 *** | 0.242 | 0.014 *** | 0.003 |
YEAR2007 | 1.016 *** | 0.245 | 1.039 *** | 0.242 | 0.012 *** | 0.003 |
YEAR2008 | 1.181 *** | 0.239 | 1.222 *** | 0.235 | 0.018 *** | 0.003 |
YEAR2009 | 0.690 *** | 0.247 | 0.713 *** | 0.247 | 0.007 ** | 0.003 |
YEAR2010 | 0.654 *** | 0.247 | 0.650 *** | 0.242 | 0.006 * | 0.003 |
YEAR2011 | 0.904 *** | 0.242 | 0.886 *** | 0.238 | 0.010 *** | 0.003 |
YEAR2012 | 0.725 *** | 0.241 | 0.721 *** | 0.237 | 0.007 ** | 0.003 |
YEAR2013 | 0.115 | 0.255 | 0.104 | 0.251 | 0.0005 | 0.003 |
YEAR2014 | 0.184 | 0.253 | 0.163 | 0.247 | 0.003 | 0.003 |
YEAR2015 | 0.141 | 0.250 | 0.144 | 0.245 | 0.003 | 0.003 |
YEAR2016 | 0.307 | 0.246 | 0.301 | 0.241 | 0.004 | 0.003 |
YEAR2017 | 0.256 | 0.245 | 0.243 | 0.242 | 0.003 | 0.003 |
Constant | - | - | −3.354 *** | 0.405 | −0.047 *** | 0.005 |
Log likelihood | −1059.349 | −1816.397 | 950.434 | |||
chi2 | 161.67 | 178.52 | 469.30 | |||
Prob > chi2 | 0.000 | 0.000 | 0.000 | |||
Total obs. | 3026 | 4567 | 4586 | |||
Uncensured | - | - | 900 | |||
Censured | - | - | 3686 | |||
No groups | 250 | 406 | 406 |
Fixed Effect (within) | Random Effects (GLS) | |||
---|---|---|---|---|
Variables | Coef. | SE | Coef. | SE |
ROA | −0.045 ** | 0.018 | −0.027 *** | 0.010 |
ΔREV | 0.003 | 0.002 | 0.002 | 0.002 |
ΔOCFA | 0.015 *** | 0.006 | 0.013 *** | 0.004 |
GWA | 0.016 | 0.012 | 0.008 *** | 0.003 |
P/B | 5.72 × 10−6 | 0.00001 | 0.00002 | 0.00002 |
DEBT | 0.009 * | 0.005 | −0.001 | 0.002 |
BATH | 0.016 *** | 0.004 | 0.017 *** | 0.004 |
SMOOTH | −0.0006 * | 0.0003 | −0.0005 * | 0.0003 |
YEAR2006 | 0.0005 | 0.0008 | 0.0003 | 0.0005 |
YEAR2007 | 0.001 | 0.0008 | 0.0007 | 0.0005 |
YEAR2008 | 0.004 ** | 0.002 | 0.004 *** | 0.002 |
YEAR2009 | −0.0004 | 0.0008 | 0.0004 | 0.0007 |
YEAR2010 | −0.00004 | 0.0005 | −5.09 × 10−7 | 0.0004 |
YEAR2011 | 0.0007 | 0.0005 | 0.0008 | 0.0005 |
YEAR2012 | −0.0002 | 0.0005 | 0.00007 | 0.0004 |
YEAR2013 | −0.0003 | 0.0005 | −0.0001 | 0.0004 |
YEAR2014 | 0.0005 | 0.0008 | 0.0006 | 0.0008 |
YEAR2015 | 0.0007 | 0.0009 | 0.001 | 0.0009 |
YEAR2016 | 0.0005 | 0.0007 | 0.00076 | 0.0007 |
YEAR2017 | 0.0002 | 0.0004 | 0.0002 | 0.0004 |
Constant | −0.004 | 0.003 | 0.002 * | 0.001 |
R-Squared | ||||
Within | 0.149 | 0.139 | ||
Between | 0.045 | 0.069 | ||
Overall | 0.105 | 0.129 | ||
Rho | 0.279 | 0.033 | ||
No obs. | 4351 | 4351 | ||
No groups | 385 | 385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjærland, F.; Forbord, K.; Oust, A.; Stephani, H. Management’s Discretionary Assessments of Goodwill Impairments—Evidence from STOXX Europe 600. Int. J. Financial Stud. 2023, 11, 81. https://doi.org/10.3390/ijfs11020081
Kjærland F, Forbord K, Oust A, Stephani H. Management’s Discretionary Assessments of Goodwill Impairments—Evidence from STOXX Europe 600. International Journal of Financial Studies. 2023; 11(2):81. https://doi.org/10.3390/ijfs11020081
Chicago/Turabian StyleKjærland, Frode, Kristian Forbord, Are Oust, and Håkon Stephani. 2023. "Management’s Discretionary Assessments of Goodwill Impairments—Evidence from STOXX Europe 600" International Journal of Financial Studies 11, no. 2: 81. https://doi.org/10.3390/ijfs11020081
APA StyleKjærland, F., Forbord, K., Oust, A., & Stephani, H. (2023). Management’s Discretionary Assessments of Goodwill Impairments—Evidence from STOXX Europe 600. International Journal of Financial Studies, 11(2), 81. https://doi.org/10.3390/ijfs11020081