Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Bivariate Copula Function
3.2. Archimedean Copulas
3.2.1. Gumbel Copula
3.2.2. Clayton Copula
3.2.3. Frank Copula
3.2.4. Plackett Copula
3.3. Elliptical Copulas
3.3.1. Gaussian Copula
3.3.2. t-Copula
3.3.3. Rotated Copulas
3.4. BEKK-GARCH Model
4. Empirical Results and Discussion
4.1. Data
4.2. Preliminary Results
4.3. Goodness-of-Fit of Copulas Selection
4.4. Results of Gumbel and Rotated Clayton Copula
4.5. Estimated Results of the BEKK-GARCH
5. Conclusions and Policy Implication
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Panel C: Full Sample Period: From 2 January 2004 to 1 April 2022 | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | BMat | CoGood | CoServ | Fin | Health | Ind | Techn | Telecom |
μ1 | 0.5171 *** (8.4767) | 0.5018 *** (13.2713) | 0.5016 *** (9.1472) | 0.5410 *** (5.7297) | 0.5014 *** (13.1775) | 0.5020 *** (9.1393) | 0.5014 *** (7.2888) | 0.5453 *** (5.7449) |
μ2 | 0.4829 *** (7.0910) | 0.4982 *** (7.5995) | 0.4983 *** (6.8758) | 0.4581 *** (8.7095) | 0.4969 *** (16.7989) | 0.4980 *** (5.9569) | 0.4993 *** (12.7173) | 0.4547 *** (8.7703) |
C11 | 0.0577 *** (3.8655) | 0.0575 *** (6.1255) | 0.0588 *** (6.0480) | 0.2886 *** (4.2531) | 0.0577 *** (6.5806) | 0.0567 *** (6.2478) | 0.0573 *** (5.5786) | 0.2885 *** (3.7543) |
C21 | 0.0470 *** (3.6360) | 0.0740 ** (2.9058) | 0.0116 (0.2583) | −0.0140 (−0.0752) | 0.0024 (0.0966) | 0.1976 ** (2.70245 | 0.0665 ** (2.2769) | −0.0025 (−0.1986) |
C22 | 0.0634 *** (4.8764) | 0.1601 *** (4.0653) | 0.2388 *** (10.6594) | 0.2886 *** (6.1343) | 0.0913 *** (6.1232) | 0.1600 *** (3.9056) | 0.0589 *** (4.0054) | 0.2889 *** (6.3421) |
A11 | 0.2691 *** (6.1408) | 0.3100 *** (11.1622) | 0.2814 *** (9.7069) | 0.1380 *** (6.1353) | 0.3033 *** (12.1798) | 0.3040 *** (10.4696) | 0.2388 *** (10.6593) | 0.1653 *** (6.1343) |
A21 | −0.1537 *** (−4.0988) | −0.0336 *** (−3.7021) | 0.0892 (1.3661) | 0.0210 (1.1268) | 0.1620 *** (7.6233) | 0.3199 *** (8.3996) | 0.0441 (1.3823) | 0.0283 (1.1276) |
A12 | 0.0293 (1.0597) | −0.0031 (−0.1253) | −0.0333 (−1.5007) | 0.0280 (1.2058) | −0.0487 ** (−2.7447) | −0.0292 (−1.0676) | −0.0343 *** (−3.4851) | 0.0232 (1.2073) |
A22 | 0.1722 *** (5.2701) | 0.1808 *** (4.4175) | 0.2001 *** (5.1174) | 0.1204 *** (5.8111) | 0.0707 *** (3.9478) | 0.1591 *** (3.4097) | 0.2446 *** (4.6633) | 0.1732 *** (5.8222) |
B11 | 0.9380 *** (6.6866) | 0.9304 *** (6.4136) | 0.9381 *** (6.0332) | 0.9180 *** (7.2464) | 0.9299 *** (11.2845) | 0.9313 *** (6.4266) | 0.9496 *** (9.0599) | 0.9201 *** (7.2972) |
B21 | 0.1301 *** (7.9254) | 0.0257 *** (8.6420) | −0.0251 (−0.6846) | 0.0510 *** (5.7373) | −0.0682 *** (−8.1398) | 0.0824 *** (7.0942) | −0.0061 (−0.3676) | 0.0510 *** (5.6796) |
B12 | −0.0917 *** (−2.6298) | −0.0222 (−0.6204) | 0.0148 * (2.0586) | 0.0105 ** (3.2150) | 0.0211 * (2.0281) | −0.0173 *** (−4.3992) | 0.0621 *** (4.0401) | 0.0182 ** (3.2170) |
B22 | 0.9379 *** (9.1044) | 0.8095 *** (5.2189) | 0.8797 *** (3.4097) | 0.9134 *** (12.4400) | 0.9314 *** (4.9865) | 0.8149 *** (9.3215) | 0.9470 *** (6.7654) | 0.9308 *** (8.9483) |
References
- Ahmed, Abdullahi D., and Rui Huo. 2018. China–Africa financial markets linkages: Volatility and interdependence. Journal of Policy Modeling 40: 1140–64. [Google Scholar] [CrossRef]
- Ahmed, Abdullahi D., and Rui Huo. 2019. Impacts of China’s crash on Asia-Pacific financial integration: Volatility interdependence, information transmission and market co-movement. Economic Modelling 79: 28–46. [Google Scholar] [CrossRef]
- Akhtaruzzaman, Md, Sabri Boubaker, and Ahmet Sensoy. 2021. Financial contagion during COVID–19 crisis. Finance Research Letters 38: 101604. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, Rui, Yrjo Koskinen, Shuai Yang, and Chendi Zhang. 2020. Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. The Review of Corporate Finance Studies 9: 593–621. [Google Scholar] [CrossRef]
- Alp, Ozge Sezgin, Bilge Canbaloglu, and Gozde Gurgun. 2022. Stock liquidity, stock price crash risk, and foreign ownership. Borsa Istanbul Review 22: 477–86. [Google Scholar] [CrossRef]
- Bai, Min, Yafeng Qin, and Huiping Zhang. 2021. Stock price crashes in emerging markets. International Review of Economics and Finance 72: 466–82. [Google Scholar] [CrossRef]
- Bekaert, Geert, and Campbell R. Harvey. 1997. Emerging equity market volatility. Journal of Financial Economics 43: 29–77. [Google Scholar] [CrossRef] [Green Version]
- Bollerslev, Tim, Robert F. Engle, and Jeffrey M. Wooldridge. 1988. A capital asset pricing model with time-varying covariances. Journal of Political Economy 96: 116–31. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Ting Sze, and Kai Yin Allison Haga. 2021. Using E-GARCH to analyze the impact of investor sentiment on stock returns near stock market crashes. Frontiers in Psychology 12: 664849. [Google Scholar] [CrossRef]
- Cheng, Ke, and Xiaoguang Yang. 2017. Interdependence between the stock market and the bond market in one country: Evidence from the subprime crisis and the European debt crisis. Financial Innovation 3: 17–55. [Google Scholar] [CrossRef] [Green Version]
- Clayton, David George. 1978. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141–51. [Google Scholar] [CrossRef]
- Cui, Xin, Ahmet Sensoy, Duc Khuong Nguyen, Shouyu Yao, and Yiyao Wu. 2022. Positive information shocks, investor behavior and stock price crash risk. Journal of Economic Behavior and Organization 197: 493–518. [Google Scholar] [CrossRef]
- Dai, Peng-Fei, Xiong Xiong, and Wei-Xing Zhou. 2019. Visibility graph analysis of economy policy uncertainty indices. Physica A: Statistical Mechanics and Its Applications 531: 121748. [Google Scholar] [CrossRef]
- Dai, Peng-Fei, Xiong Xiong, and Wei-Xing Zhou. 2021. A global economic policy uncertainty index from principal component analysis. Finance Research Letters 40: 101686. [Google Scholar] [CrossRef]
- Dai, Xingyu, Matthew C. Li, Ling Xiao, and Qunwei Wang. 2022. COVID-19 and China commodity price jump behavior: An information spillover and wavelet coherency analysis. Resources Policy 79: 103055. [Google Scholar] [CrossRef]
- Engle, Robert F., and Kenneth F. Kroner. 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11: 122–50. [Google Scholar] [CrossRef]
- FRED. 2020. Unemployment Rate. St. Louis: Federal Reserve Bank. Available online: https://fred.stlouisfed.org/series/UNRATE (accessed on 13 December 2022).
- Genest, Christian, Bruno Rémillard, and David Beaudoin. 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44: 199–213. [Google Scholar] [CrossRef]
- Goldstein, Morris. 1998. The Asian financial crisis: Causes, cures, and systemic implications, gravity model approach. Manchester School 70: 87–106. [Google Scholar]
- Gong, Binlei, Shurui Zhang, Lingran Yuan, and Kevin Z. Chen. 2020. A balance act: Minimizing economic loss while controlling novel coronavirus pneumonia. Journal of Chinese Governance 5: 249–68. [Google Scholar] [CrossRef] [Green Version]
- Gumbel, Emil Julius. 1960. Bivariate Exponential Distributions. Journal of the American Statistical Association 55: 698–707. [Google Scholar] [CrossRef]
- Hamao, Yasushi, Ronald W. Masulis, and Victor Ng. 1990. Correlations in Price Changes and Volatility across International Stock Markets. The Review of Financial Studies 3: 281–307. [Google Scholar] [CrossRef]
- Ho, Kung-Cheng, Chia-ling Yao, Chenfang Zhao, and Zikui Pan. 2022. Modern health pandemic crises and stock price crash risk. Economic Analysis and Policy 74: 448–63. [Google Scholar] [CrossRef]
- Hunjra, Imran Ahmed, Rashid Mehmood, and Tahar Tayachi. 2020. How Do Corporate Social Responsibility and Corporate Governance Affect Stock Price Crash Risk? Journal of Risk and Financial Management 13: 30. [Google Scholar] [CrossRef] [Green Version]
- Hutton, Amy P., Alan J. Marcus, and Hassan Tehranian. 2009. Opaque financial reports, R2, and crash risk. Journal of Financial Economics 94: 67–86. [Google Scholar] [CrossRef]
- In, Francis, Sangbae Kim, Jai Hyung Yoon, and Christopher Viney. 2001. Dynamic interdependence and volatility transmission of Asian stock markets Evidence from the Asian crisis. International Review of Financial Analysis 10: 87–96. [Google Scholar] [CrossRef]
- Jiang, George J., and Woojin Kim. 2016. Evaluating analysts’ value: Evidence from recommendation revisions around stock price jumps. The European Journal of Finance 22: 167–94. [Google Scholar] [CrossRef]
- Jiang, Yonghong, He Nie, and Joe Yohanes Monginsidi. 2017. Co-movement of ASEAN stock markets: New evidence from wavelet and VMD-based copula tests. Economic Modelling 64: 384–98. [Google Scholar] [CrossRef]
- Jin, Li, and Stewart C. Myers. 2006. R2 around the world: New theory and new tests. Journal of Financial Economics 79: 257–92. [Google Scholar] [CrossRef] [Green Version]
- Kim, Hyun-Seok, Hong-Ghi Min, and Judith A McDonald. 2016. Returns, correlations, and volatilities in equity markets: Evidence from six OECD countries during the US financial crisis. Economic Modelling 59: 9–22. [Google Scholar] [CrossRef]
- Kim, Jeong-Bon, Yinghua Li, and Liandong Zhang. 2011. CFOs versus CEOs: Equity incentives and crashes. Journal of Financial Economics 101: 713–30. [Google Scholar] [CrossRef]
- Kim, Yongtae, Haidan Li, and Siqi Li. 2014. Corporate social responsibility and stock price crash risk. Journal of Banking & Finance 43: 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kong, Xiaowei, Yifan Jin, Lihua Liu, and Jialu Xu. 2023. Firms’ exposures on COVID-19 and stock price crash risk: Evidence from China. Finance Research Letters 52: 103562. [Google Scholar] [CrossRef]
- Li, Yanan, and David E. Giles. 2015. Modelling volatility spillover effects between developed stock markets and Asian emerging stock markets. International Journal of Finance & Economics 20: 155–77. [Google Scholar] [CrossRef] [Green Version]
- Lin, Arthur J., Hai Yen Chang, and Jung Lieh Hsiao. 2019. Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets? Transportation Research Part E: Logistics and Transportation Review 127: 265–83. [Google Scholar] [CrossRef]
- Liu, Zhifeng, Toan Luu Duc Huynh, and Peng-Fei Dai. 2021. The impact of COVID-19 on the stock market crash risk in China. Research in International Business and Finance 57: 101419. [Google Scholar] [CrossRef] [PubMed]
- Ma, Richie Ruchuan, Tao Xiong, and Yukun Bao. 2021. The Russia-Saudi Arabia oil price war during the COVID-19 pandemic. Energy Economics 102: 105517. [Google Scholar] [CrossRef]
- Majdoub, Jihed, and Walid Mansour. 2014. Islamic equity market integration and volatility spillover between emerging and US stock markets. The North American Journal of Economics and Finance 29: 452–70. [Google Scholar] [CrossRef]
- Mensi, Walid, Besma Hkiri, Khamis H. Al-Yahyaee, and Sang Hoon Kang. 2018. Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach. International Review of Economics and Finance 54: 74–102. [Google Scholar] [CrossRef]
- Meric, Gulser, Christine Lentz, Wayne Smeltz, and Ilhan Meric. 2012. International Evidence on Market Linkages after the 2008 Stock Market Crash. The International Journal of Business and Finance Research 6: 45–57. Available online: https://ssrn.com/abstract=2149145 (accessed on 15 February 2023).
- Pretorius, Elna. 2002. Economic determinants of emerging stock market interdependence. Emerging Markets Review 3: 84–105. [Google Scholar] [CrossRef] [Green Version]
- Ross, Michael. 1989. Relation of implicit theories to the construction of personal histories. Psychological Review 96: 341–57. [Google Scholar] [CrossRef]
- Samarakoon, Lalith P. 2011. Stock market interdependence, contagion, and the U.S. financial crisis: The case of emerging and frontier markets. International Financial Markets, Institutions and Money 21: 724–42. [Google Scholar] [CrossRef]
- Savor, Pavel G. 2012. Stock returns after major price shocks: The impact of information. Journal of Financial Economics 106: 635–59. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, Syed Jawad Hussain, Ronald Ravinesh Kumar, Sajid Ali, and Saba Ameer. 2016. Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications. Physica A 457: 8–33. [Google Scholar] [CrossRef] [Green Version]
- Shamsuddin, Abul F.M., and Jae H. Kim. 2003. Integration and interdependence of stock and foreign exchange markets: An Australian perspective. International Financial Markets, Institutions and Money 13: 237–54. [Google Scholar] [CrossRef]
- Shu, Min, Ruiqiang Song, and Wei Zhu. 2021. The ‘COVID’ crash of the 2020 U.S. Stock market. North American Journal of Economics and Finance 58: 101497. [Google Scholar] [CrossRef]
- Sklar, Abe. 1959. Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris 8: 229–31. [Google Scholar]
- Theodossiou, Panayiotis, and Unro Lee. 1993. Mean and volatility spillovers across major national stock markets: Further empirical evidence. Journal of Financial Research 16: 337–50. [Google Scholar] [CrossRef]
- Wang, Liang, Qikai Wang, and Fan Jiang. 2023. Booster or stabilizer? Economic policy uncertainty: New firm-specific measurement and impacts on stock price crash risk. Finance Research Letters 51: 103462. [Google Scholar] [CrossRef]
- Wen, Fenghua, Longhao Xu, Bin Chen, Xiaohua Xia, and Jinyi Li. 2020. Heterogeneous institutional investors, short selling and stock price crash risk: Evidence from China. Emerging Markets Finance and Trade 56: 2812–25. [Google Scholar] [CrossRef]
- Wen, Fenghua, Longhao Xu, Guangda Ouyang, and Gang Kou. 2019. Retail investor attention and stock price crash risk: Evidence from China. International Review of Financial Analysis 65: 101376. [Google Scholar] [CrossRef]
- Yang, Lu, and Shigeyuki Hamori. 2015. Interdependence between the bond markets of CEEC-3 and Germany: A wavelet Coherence Analysis. North American Journal of Economics and Finance 32: 124–38. [Google Scholar] [CrossRef]
- Yang, Lu, Xiao Jing Cai, Huimin Zhang, and Shigeyuki Hamori. 2016. Interdependence of foreign exchange markets: A wavelet coherence analysis. Economic Modelling 55: 6–14. [Google Scholar] [CrossRef]
- Zhou, Fangzhao, Jichen Zhu, Yawei Qi, Jun Yang, and Yunbi An. 2021. Multi-dimensional corporate social responsibilities and stock price crash risk: Evidence from China. International Review of Financial Analysis 78: 101928. [Google Scholar] [CrossRef]
Variables | SP500 | BMat | CoGood | CoServ | Fin | Health | Ind | Techn | Telecom |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.0297 | 0.0178 | 0.0383 | 0.0016 | 0.0169 | −0.0265 | 0.0111 | 0.0076 | −0.0323 |
Median | 0.0724 | 0.0691 | 0.0806 | 0.0861 | 0.0615 | 0.0720 | 0.0591 | 0.0494 | 0.0471 |
Std. Dev. | 1.2055 | 2.2821 | 1.6643 | 3.95075 | 1.9568 | 3.8658 | 1.8632 | 2.1548 | 4.2250 |
Skewness | −0.5653 | −0.6645 | −0.6053 | −44.30323 | −0.6302 | −45.4507 | −0.6730 | −0.7792 | −36.1993 |
Kurtosis | 17.4332 | 13.0515 | 12.6524 | 2597.596 | 10.3139 | 2687.674 | 9.5365 | 17.3451 | 1982.636 |
J-Bera | 39,875.48 | 19,557.25 | 18,004.26 | 12,138.751 | 10,479.33 | 18,543.561 | 8473.310 | 39,612.00 | 18,767.881 |
Probability | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Observations | 4566 | 4566 | 4566 | 4566 | 4566 | 4566 | 4566 | 4566 | 4566 |
Copulas | Normal | Clayton | RClayt | Plackett | Frank | Gumb | RGumb | t-Stud | |
---|---|---|---|---|---|---|---|---|---|
SP500-BMat | AIC | −3.5242 | −8.4786 | −39.9786 | −1.3259 | −1.1912 | −54.5846 | 13.3373 | −26.8594 |
BIC | −3.5228 | −8.4772 | −39.9772 | −1.3245 | −1.1898 | −54.5832 | 13.3401 | −24.4304 | |
SP500-CoGood | AIC | −14.8092 | −17.6504 | −55.5688 | −12.4398 | −11.3598 | −77.6290 | −15.8062 | −27.9768 |
BIC | −14.8078 | −17.6490 | −55.5674 | −12.4384 | −11.3584 | −77.6262 | −15.8034 | −21.5478 | |
SP500-CoServ | AIC | −10.4508 | −13.9968 | −43.2947 | −6.9529 | −6.4052 | −58.6374 | 6.5561 | −17.4917 |
BIC | −10.4494 | −13.9954 | −43.2933 | −6.9515 | −6.4038 | −58.6360 | 6.5589 | −16.0627 | |
SP500-Fin | AIC | −0.0870 | −1.8158 | −23.1897 | −0.0590 | 0.0010 | −13.8672 | 58.7474 | −19.4787 |
BIC | −0.0856 | −1.8144 | −23.1883 | −0.0576 | 0.0024 | −13.8658 | 58.7502 | −18.0496 | |
SP500-Health | AIC | −9.8860 | −11.9377 | −41.4210 | −4.7482 | −4.4250 | −56.0367 | 19.6101 | −15.2767 |
BIC | −9.8846 | −11.9363 | −41.4196 | −4.7468 | −4.4236 | −56.0353 | 19.6129 | −13.8477 | |
SP500-Ind | AIC | −9.0721 | −14.8257 | −45.6266 | −5.1145 | −4.6126 | −66.4758 | −4.6584 | −22.8345 |
BIC | −9.0707 | −14.8243 | −45.6252 | −5.1131 | −4.6112 | −66.4744 | −4.6556 | −26.4055 | |
SP500-Techn | AIC | −9.0721 | −14.8267 | −45.6266 | 5.1173 | −4.6186 | −66.4758 | −4.6584 | −15.3977 |
BIC | −9.0707 | −14.8239 | −45.6252 | −5.1243 | −4.6451 | −66.4787 | −4.6456 | −14.9686 | |
SP500-Telecom | AIC | −0.0648 | −1.1064 | −24.2659 | −0.4057 | 0.0038 | −13.1253 | 70.3740 | −17.6879 |
BIC | −0.0634 | −1.1050 | −24.2645 | −0.4043 | 0.0052 | −13.1239 | 70.3768 | −13.2235 |
Gumbel Copulas | Rotated Clayton Copulas | |||||||
---|---|---|---|---|---|---|---|---|
Par | SP500-BMat | SP500-CoGood | SP500-CoServ | SP500-Health | SP500-Ind | SP500-Techn | SP500-Fin | SP500-Telecom |
θ | 1.0254 *** (4.5627) | 1.0356 *** (3.9538) | 1.0267 *** (4.0154) | 1.0345 *** (7.4510) | 1.0283 *** (4.3429) | 1.0148 ** (3.1762) | 0.0649 ** 3.1051) | 0.0658 ** (3.1278) |
τ | 0.04954 | 0.06875 | 0.05201 | 0.06669 | 0.05504 | 0.02916 | - | - |
Panel A: Global Financial Crisis from 9 October 2007 to 9 March 2009 | ||||||||
Variables | BMat | CoGood | CoServ | Fin | Health | Ind | Techm | Telecom |
μ1 | −0.2175 (−0.7557) | −0.1757 (−1.7746) | −0.2486 ** (−2.4829) | −0.2175 (−0.7635) | −0.1607 (−1.6923) | −0.1785 * (−1.9576) | −0.2175 (−0.7588) | −0.2175 (−0.7609) |
μ2 | −0.2886 (−0.5553) | −0.2355 * (−1.9784) | −0.2059 (−1.5929) | −0.2819 (−0.7388) | −0.1528 (−1.3008) | −0.1769 (−1.3889) | −0.2412 (−0.5699) | −0.1811 (−0.3633) |
C11 | 2.5848 *** (6.9801) | 1.4015 *** (10.8559) | 1.3102 *** (7.2655) | 2.3878 *** (4.7610) | 0.4780 *** (9.5032) | 0.4779 *** (4.2729) | 2.4807 *** (5.9701) | 2.5391 *** (9.5408) |
C21 | −0.0139 (−0.0236) | 0.0018 (0.0052) | 0.0346 (0.0917) | −0.3437 (−0.7480) | 0.0053 (0.7250) | 0.0133 (0.6742) | −0.0677 (−0.1379) | −0.4095 (−0.7099) |
C22 | 4.2783 *** (6.0981) | 1.8045 (0.8961) | 1.9427 *** (10.3557) | 3.1234 (0.9821) | 0.6618 ** (2.6199) | 2.3748 *** (12.0793) | 3.4535 (0.8023) | 4.1270 (0.8761) |
A11 | 0.3013 (1.3604) | 0.4225 *** (5.2834) | 0.4437 *** (5.6029) | 0.1000 (1.3599) | 0.0031 (0.0019) | 0.1916 *** (3.0924) | 0.1100 (1.3839) | 0.1320 (1.3493) |
A21 | 0.0200 (0.1477) | −0.5050 (−0.7548) | −0.5080 (−1.2822) | 0.0210 (0.2090) | −0.5200 (−1.4552) | −0.5100 (−1.1961) | 0.0201 (0.1803) | 0.0206 (0.1577) |
A12 | 0.2701 *** (6.4655) | −0.1992 *** (−4.1003) | −0.1881 *** (−4.2926) | 0.2210 *** (5.3536) | −0.1766 *** (6.0359) | −0.2987 *** (8.6609) | 0.1200 *** (4.3532) | 0.1203 ** (2.4802) |
A22 | 0.1000 (1.4153) | 0.4929 *** (6.8919) | 0.5122 *** (6.6879) | 0.1000 (1.4073) | 0.1910 *** (3.5245) | 0.3516 *** (3.8633) | 0.1020 (1.3159) | 0.1101 (1.4573) |
B11 | 0.9000 *** (15.2454) | 0.0001 * (1.9345) | 0.0011 (0.0014) | 0.9040 *** (10.9209) | 0.8311 *** (14.3637) | 0.8819 *** (5.2478) | 0.9100 *** (10.3810) | 0.8932 *** (10.3469) |
B21 | 0.0511 (1.0887) | −0.5002 (0.8721) | −0.5000 (0.8654) | 0.0513 (1.3018) | −0.5060 (−0.9609) | 0.2019 (0.7981) | 0.0510 (1.6595) | 0.0517 (1.0384) |
B12 | 0.1100 *** (3.3492) | 0.5000 *** (8.9899) | 0.5100 *** (10.9252) | 0.1401 *** (6.0466) | 0.3816 *** (10.9479) | −0.1411 ** (2.0545) | 0.1190 *** (4.1239) | 0.1114 *** (5.3161) |
B22 | 0.9000 *** (119.7641) | 0.2457 *** (3.6512) | 0.1994 ** (2.5880) | 0.9000 *** (13.5406) | 0.7698 *** (23.5621) | 0.8001 *** (14.0019) | 0.9000 ***(11.3654) | 0.9000 *** (14.1761) |
Panel B: COVID−19 Stock market crash from 19 February 2020 to 23 March 2020 | ||||||||
Variables | BMat | CoGood | CoServ | Fin | Health | Ind | Techn | Telecom |
μ1 | 0.1387 (0.3746) | 0.1285 (0.3887) | 0.1477 (0.3871) | 0.1394 (0.3766) | 0.9566 (0.5817) | 0.1287 (0.3822) | 0.1264 (0.3844) | 0.1568 (1.1129) |
μ2 | −2.3602 (−0.8304) | −1.3029 (−0.7595) | −1.8792 (−1.0133) | −2.7783 (−1.1371) | −1.7518 * (−1.8415) | −2.3147 (−1.1594) | −1.2012 (−0.5658) | −3.4505 *** (−3.0241) |
C11 | 0.7783 ** (6.7661) | 0.7884 *** (7.4109) | 0.7683 *** (5.6590) | 0.7981 *** (8.0045) | 0.2060 ** (7.9324) | 0.7783 *** (8.4304) | 0.7783 *** (5.0923) | 0.1557 * (1.93911) |
C21 | −0.7374 (−0.2629) | −0.5004 (−0.2818) | −0.5235 (−0.2713) | −0.2770 (−0.1136) | 0.4333 (0.9736) | −0.1729 (−0.0851) | −0.6126 (−0.2821) | 0.9150 *** (7.0840) |
C22 | 7.1667 *** (5.2100) | 4.1588 *** (6.9830) | 4.5172 *** (7.8307) | 6.0886 *** (7.0083) | 4.5306 *** (6.1304) | 4.9078 *** (10.7210) | 5.1932 *** (7.5431) | 5.2109 *** (4.7238) |
A11 | 0.1000 ** (2.3739) | 0.1032 *** (5.3953) | 0.1090 *** (3.3977) | 0.1042 *** (4.4008) | 0.5057 *** (8.4415) | 0.1067 ** (2.4009) | 0.1092 (0.3906) | 0.5509 ** (2.2926) |
A21 | 0.0202 (0.0089) | 0.0251 (0.0147) | 0.0200 (0.0138) | 0.0206 (0.0108) | −0.5000 (−0.2636) | 0.0219 (0.0131) | 0.0220 (0.0122) | −0.5081 (−0.1842) |
A12 | 0.2210 *** (5.5859) | 0.2204 *** (5.3715) | 0.2201 *** (8.4210) | 0.2290 *** (4.5205) | 0.2154 *** (3.3661) | 0.2209 *** (5.4275) | 0.2217 *** (4.4413) | −0.2401 ** (−2.9602) |
A22 | 0.1009 (0.3283) | 0.0895 ** (2.3200) | 0.1000 (0.3610) | 0.1047 *** (7.3250) | 0.1103 *** (6.0336) | 0.1076 ** (0.3278) | 0.1084 (0.3305) | 0.3561 (1.0272) |
B11 | 0.9081 *** (19.0877) | 0.9001 *** (12.5192) | 0.9000 *** (19.6732) | 0.9100 *** (19.8270) | 0.7100 *** (4.5004) | 0.9056 *** (20.3946) | 0.9082 *** (19.3750) | 0.7919 *** (5.2046) |
B21 | 0.0511 (0.0793) | 0.0520 (0.1176) | 0.0510 (0.1132) | 0.0513 (0.0897) | 0.5057 (0.3066) | 0.0518 (0.1078) | 0.0528 (0.0988) | 0.0509 (0.3622) |
B12 | 0.1160 ** (2.3049) | 0.1107 *** (3.8832) | 0.1100 *** (3.0027) | 0.1118 *** (4.5254) | 0.2721 *** (6.2310) | 0.1182 *** (4.0964) | 0.1162 *** (5.2314) | 0.1239 *** (6.3273) |
B22 | 0.9071 *** (17.2287) | 0.9000 *** (18.5162) | 0.9003 *** (18.4458) | 0.9107 *** (17.8281) | 0.8537 *** (8.0102) | 0.9061 *** (18.5658) | 0.9088 *** (18.0740) | 0.8021 *** (7.9016) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudiangombe, B.M.; Muteba Mwamba, J.W. Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models. Int. J. Financial Stud. 2023, 11, 77. https://doi.org/10.3390/ijfs11020077
Mudiangombe BM, Muteba Mwamba JW. Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models. International Journal of Financial Studies. 2023; 11(2):77. https://doi.org/10.3390/ijfs11020077
Chicago/Turabian StyleMudiangombe, Benjamin Mudiangombe, and John Weirstrass Muteba Mwamba. 2023. "Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models" International Journal of Financial Studies 11, no. 2: 77. https://doi.org/10.3390/ijfs11020077
APA StyleMudiangombe, B. M., & Muteba Mwamba, J. W. (2023). Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models. International Journal of Financial Studies, 11(2), 77. https://doi.org/10.3390/ijfs11020077