Winner Strategies in a Simulated Stock Market
Abstract
:1. Introduction
2. Literature Review
3. Model
3.1. Agents
3.2. Assets
3.3. Market
3.4. Simulation
4. Results
4.1. Classification of Results
4.2. Identifying Winners by Scores
4.3. Parameter Distribution of Winners
4.4. Parameter Distribution of Losers
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Significance
Appendix B. Kelly in Investment
1 | the oldest source we could find in this regard was Fetter (1904), which was cited in Herbener and Holcombe (1999). |
2 | In the simulation, a slightly modified formula is utilized to ensure that the dividends remain positive and do not deviate significantly from the initial value
|
3 | A higher price increases the probability of agents calculating a positive trend, subsequently leading to a positive technical premium. This is why the technical component of the return is computed using the previous periods’ stock prices. |
4 | In a pseudo-random number generator such as the one we used, a seed is needed to initiate the generator. Starting with different seeds results in different series of numbers. |
References
- Arthur, W. Brian, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Tayler. 1996. Asset pricing under endogenous expectations in an artificial stock market. In Working Papers 96-12-093, Santa Fe Institute, Reprinted in The Economy as an Evolving Complex System II. Boca Raton: CRC Press, pp. 15–44. [Google Scholar]
- Asness, Clifford S., Andrea Frazzini, and Lasse Heje Pedersen. 2019. Quality minus junk. Review of Accounting Studies 24: 34–112. [Google Scholar] [CrossRef]
- Ehrentreich, Norman. 2008. Agent-Based Modeling: The Santa Fe Institute Artificial Stock Market Model Revisited. Berlin and Heidelberg: Springer. [Google Scholar]
- El Oubani, Ahmed, and Mostafa Lekhal. 2022. An agent-based model of financial market efficiency dynamics. Borsa Istanbul Review 22: 699–710. Available online: https://www.sciencedirect.com/science/article/pii/S2214845021000995 (accessed on 25 May 2023). [CrossRef]
- Evstigneev, Igor V., Thorsten Hens, and Klaus Reiner Schenk-Hoppé. 2006. Evolutionary stable stock markets. Economic Theory 27: 449–68. [Google Scholar] [CrossRef]
- Evstigneev, Igor V., Thorsten Hens, and Klaus Reiner Schenk-Hoppé. 2009. Evolutionary finance. In Handbook of Financial Markets: Dynamics and Evolution. Amsterdam: Elsevier, pp. 507–66. [Google Scholar]
- Evstigneev, Igor V., Thorsten Hens, and Klaus Reiner Schenk-Hoppé. 2016. Evolutionary behavioral finance. In The Handbook of Post-Crisis Financial Modeling. London: Palgrave Macmillan, pp. 214–34. [Google Scholar]
- Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [Google Scholar] [CrossRef]
- Fetter, Frank A. 1904. The Principles of Economics: With Applications to Practical Problems. New York: Century Company. [Google Scholar]
- Frazzini, Andrea, David Kabiller, and Lasse Heje Pedersen. 2018. Buffett’s alpha. Financial Analysts Journal 74: 35–55. [Google Scholar] [CrossRef]
- Gai, Junyue. 2022. Buffett’s value investment theory based on improved dcf model. Wireless Communications and Mobile Computing 2022: 4293248. [Google Scholar] [CrossRef]
- Graham, Benjamin, and David Le Fevre Dodd. 1934. Security Analysis. New York: McGraw-Hill. [Google Scholar]
- Hakansson, Nils H. 1971. Multi-period mean-variance analysis: Toward a general theory of portfolio choice. The Journal of Finance 26: 857–84. [Google Scholar]
- Hens, Thorsten, and Klaus Reine Schenk-Hoppé. 2020. Patience is a virtue: In value investing. International Review of Finance 20: 1019–31. [Google Scholar] [CrossRef]
- Herbener, Jeffrey M., and Randall G. Holcombe. 1999. Frank A. Fetter: A Forgotten Giant. 15 Great Austrian Economists. Auburn: The Ludwig von Mises Institute, pp. 123–41. [Google Scholar]
- Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang. 2022. The economics of security analysis. Management Science. Available online: https://pubsonline.informs.org/doi/10.1287/mnsc.2022.4640 (accessed on 26 May 2023).
- Jegadeesh, Narasimhan, and Sheridan Titman. 1993. Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance 48: 65–91. [Google Scholar] [CrossRef]
- Kai-Ineman, Daniel, and Amos Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47: 363–91. [Google Scholar]
- Kelly, John L. 1956. A new interpretation of the information rate, bell systems tech. IRE Transactions on Information Theory 2: 185–89. [Google Scholar] [CrossRef]
- Keynes, John Maynard. 1936. The General Theory of Employment, Interest and Money. New York: Harcourt Brace and Co. [Google Scholar]
- Kim, Gew-rae, and Harry M Markowitz. 1989. Investment rules, margin, and market volatility. Journal of Portfolio Management 16: 45–52. [Google Scholar] [CrossRef]
- Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh. 2020. Shrinking the cross-section. Journal of Financial Economics 135: 271–92. [Google Scholar] [CrossRef]
- LeBaron, Blake. 2001. Evolution and time horizons in an agent based stock market. Macroeconomic Dynamics 5: 225–54. [Google Scholar] [CrossRef]
- LeBaron, Blake. 2002. Short-memory traders and their impact on group learning in financial markets. Proceedings of the National Academy of Sciences of the United States of America 99: 7201–6. [Google Scholar] [CrossRef] [PubMed]
- LeBaron, Blake. 2011. Active and passive learning in agent-based financial markets. Eastern Economic Journal 37: 35–43. [Google Scholar] [CrossRef]
- LeBaron, Blake, W. Brian Arthur, and Richard Palmer. 1999. Time series properties of an artificial stock market. Journal of Economic Dynamics and Control 23: 9–10. [Google Scholar] [CrossRef]
- Levy, Moshe, Haim Levy, and Sorin Solomon. 1994. A microscopic model of the stock market: Cycles, booms, and crashes. Economics Letters 45: 103–11. [Google Scholar] [CrossRef]
- Lo, Andrew W., H. Allen Orr, and Ruixun Zhang. 2018. The growth of relative wealth and the kelly criterion. Journal of Bioeconomics 20: 49–67. [Google Scholar] [CrossRef]
- Lux, Thomas. 1998. The socio-economic dynamics of speculative markets: Interacting agents, chaos and the fattails of return distribution. Journal of Econ Behav Organ 33: 143–65. [Google Scholar] [CrossRef]
- Lux, Thomas, and Michele Marchesi. 2000. Volatility clustering in financial markets. International Journal Theor Appl Finance 3: 675–702. [Google Scholar] [CrossRef]
- Maeda, Iwao, David DeGraw, Michiharu Kitano, Hiroyasu Matsushima, Hiroki Sakaji, Kiyoshi Izumi, and Atsuo Kato. 2020. Techniques for verifying the accuracy of risk measurement models. Journal of Risk and Financial Management 13: 71. [Google Scholar] [CrossRef]
- Meng, Terry Lingze, and Matloob Khushi. 2019. Reinforcement learning in financial markets. Data 4: 110. [Google Scholar] [CrossRef]
- Natranj, Raman, and Jochen L. Leidner. 2019. Financial market data simulation using deep intelligence agents. Paper presented at International Conference on Practical Applications of Agents and Multi-Agent Systems, Ávila, Spain, June 26–28; pp. 200–11. [Google Scholar]
- Palczewski, Jan, Klaus Reiner Schenk-Hoppé, and Tongya Wang. 2016. Itchy feet vs. cool heads: Flow of funds in an agent-based financial market. Journal of Economic Dynamics and Control 63: 53–68. [Google Scholar] [CrossRef]
- Palmer, Richard G., W. Brian Arthur, John H. Holland, Blake LeBaron, and Paul Tayler. 1994. Artificial economic life: A simple model of a stock market. Physica D: Nonlinear Phenomena 75: 264–74. [Google Scholar] [CrossRef]
- Ross, Stephen A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory 13: 341–60. [Google Scholar] [CrossRef]
- Rubinstein, Mark. 1976. The strong case for the generalized logarithmic utility model as the premier model of financial markets. The Journal of Finance 31: 551–71. [Google Scholar] [CrossRef]
- Samuelson, Paul A., and Robert C. Merton. 1974. Generalized mean-variance trade offs for best perturbation corrections to approximate portfolio decisions. The Journal of Finance 29: 27–40. [Google Scholar]
- Shleifer, Andrei, and Robert W. Vishny. 1997. The limits of arbitrage. The Journal of Finance 52: 35–55. [Google Scholar] [CrossRef]
- Westerhoff, Frank H. 2008. The use of agent-based financial market models to test the effectiveness of regulatory policies. Jahrbücher für Nationalökonomie und Statistik 228: 195–227. [Google Scholar] [CrossRef]
Number of Gained Positions | |||||||
---|---|---|---|---|---|---|---|
Agent | Score | 1st | 2nd | 3rd | Rank:4th... 6th | Rank:7th... 9th | Other Ranks |
68 | 474 (397, 547) | 26 (18, 33) | 12 (8, 17) | 9 (5, 14) | 13 (8, 19) | 5 (2, 9) | 35 |
194 | 420 (353, 506) | 29 (22, 38) | 10 (5, 15) | 4 (1, 7) | 7 (4, 11) | 5 (2, 9) | 46 |
184 | 332 (276, 384) | 2 (0, 4) | 16 (10, 23) | 14 (9, 20) | 23 (16, 30) | 8 (4, 12) | 38 |
16 | 287 (239, 340) | 0 (0, 2) | 6 (2, 10) | 17 (11, 24) | 29 (20, 37) | 9 (5, 15) | 38 |
118 | 268 (224, 314) | 5 (2, 8) | 12 (7, 17) | 9 (5, 14) | 14 (8, 19) | 12 (7, 17) | 48 |
138 | 216 (164, 274) | 6 (3, 10) | 9 (3, 14) | 6 (3, 10) | 10 (5, 14) | 6 (3, 10) | 63 |
110 | 154 (118, 187) | 0 (0, 0) | 0 (0, 1) | 0 (0, 2) | 32 (23, 39) | 18 (13, 24) | 49 |
172 | 142 (113, 174) | 0 (0, 0) | 0 (0, 1) | 0 (0, 1) | 29 (22, 38) | 26 (20, 34) | 45 |
144 | 105 (67, 149) | 2 (0, 4) | 3 (0, 7) | 3 (1, 7) | 9 (4, 14) | 5 (2, 9) | 78 |
1 | 83 (37, 140) | 4 (1, 8) | 3 (1, 6) | 2 (0, 4) | 3 (0, 6) | 1 (0, 3) | 88 |
Agent | Original Score | Reduced Score | Normalized Score |
---|---|---|---|
68 | 453 | 467 | 667 |
194 | 402 | 38 | 475 |
184 | 317 | 33 | 275 |
16 | 284 | 545 | 568 |
118 | 245 | 234 | 509 |
138 | 177 | 46 | 128 |
110 | 155 | 144 | 288 |
172 | 147 | 29 | 161 |
1 | 112 | 23 | 23 |
144 | 83 | 3 | 9 |
Time | |||||||||
---|---|---|---|---|---|---|---|---|---|
Agent | 10 | 20 | 50 | 100 | 200 | 500 | 1000 | 1500 | 2000 |
1 | 0 | 8 | 154 | 216 | 252 | 243 | 153 | 136 | 112 |
8 | 0 | 0 | 92 | 100 | 66 | 13 | 9 | 12 | 5 |
16 | 418 | 449 | 201 | 88 | 57 | 90 | 156 | 213 | 284 |
22 | 356 | 357 | 148 | 37 | 20 | 31 | 34 | 20 | 39 |
32 | 512 | 489 | 200 | 57 | 34 | 16 | 47 | 25 | 28 |
35 | 91 | 20 | 38 | 37 | 49 | 51 | 41 | 39 | 32 |
68 | 782 | 781 | 370 | 147 | 86 | 151 | 277 | 349 | 453 |
69 | 6 | 26 | 58 | 86 | 96 | 100 | 88 | 78 | 50 |
74 | 0 | 0 | 240 | 224 | 149 | 74 | 59 | 20 | 32 |
89 | 0 | 7 | 107 | 143 | 161 | 160 | 107 | 101 | 67 |
97 | 0 | 7 | 72 | 88 | 97 | 100 | 72 | 63 | 49 |
110 | 293 | 279 | 113 | 43 | 30 | 57 | 100 | 125 | 155 |
112 | 119 | 78 | 27 | 11 | 1 | 6 | 12 | 15 | 18 |
118 | 29 | 79 | 73 | 55 | 93 | 157 | 198 | 274 | 245 |
119 | 0 | 9 | 138 | 147 | 162 | 141 | 83 | 83 | 70 |
125 | 0 | 0 | 87 | 117 | 137 | 133 | 97 | 49 | 38 |
129 | 0 | 43 | 115 | 54 | 62 | 33 | 20 | 7 | 6 |
138 | 0 | 27 | 229 | 483 | 312 | 322 | 328 | 262 | 177 |
144 | 0 | 0 | 0 | 15 | 28 | 20 | 57 | 58 | 83 |
172 | 235 | 195 | 78 | 20 | 17 | 31 | 64 | 104 | 147 |
173 | 0 | 26 | 130 | 22 | 22 | 10 | 3 | 0 | 0 |
179 | 73 | 22 | 22 | 31 | 38 | 38 | 35 | 29 | 21 |
181 | 0 | 0 | 42 | 80 | 95 | 83 | 66 | 64 | 55 |
184 | 656 | 658 | 294 | 128 | 71 | 109 | 175 | 255 | 317 |
194 | 0 | 28 | 72 | 169 | 206 | 286 | 354 | 400 | 402 |
3535 | 3408 | 2104 | 1874 | 1667 | 1802 | 1945 | 2219 | 2375 | |
2413 | 2504 | 1584 | 1364 | 1152 | 1466 | 1862 | 2176 | 2375 |
Agent | Original Score | Scaled Score |
---|---|---|
68 | 453 | 469 |
194 | 402 | 75 |
184 | 317 | 369 |
16 | 284 | 280 |
118 | 245 | 73 |
138 | 177 | 48 |
110 | 155 | 217 |
172 | 147 | 169 |
1 | 112 | 55 |
144 | 83 | 0 |
cat | ||||||
Number of Gained Positions | ||||||
cat Range | 1st | 2nd | 3rd | Rank:4th... 6th | Rank:7th... 9th | All (PDF) |
0 | 0 | 1 | 0 | 0 | <1% | |
0 | 0 | 0 | 0 | 0 | 2% | |
3 | 0 | 0 | 0 | 0 | 4% | |
5 | 0 | 1 | 0 | 2 | 12% | |
2 | 5 | 4 | 4 | 6 | 12% | |
3 | 3 | 2 | 13 | 12 | 11% | |
2 | 7 | 3 | 11 | 24 | 4% | |
4 | 3 | 5 | 26 | 25 | 2% | |
9 | 8 | 12 | 21 | 10 | 2% | |
26 | 34 | 32 | 70 | 23 | 2% | |
4 | 17 | 16 | 72 | 62 | 2% | |
3 | 3 | 4 | 29 | 79 | 4% | |
13 | 6 | 5 | 11 | 18 | 11% | |
6 | 3 | 3 | 6 | 11 | 12% | |
12 | 1 | 5 | 11 | 9 | 12% | |
1 | 3 | 1 | 14 | 9 | 4% | |
6 | 6 | 4 | 9 | 10 | 2% | |
1 | 1 | 2 | 3 | 0 | <1% | |
dur | ||||||
Number of Gained Positions | ||||||
dur Range | 1st | 2nd | 3rd | Rank:4th... 6th | Rank:7th... 9th | All (PDF) |
41 | 8 | 11 | 18 | 16 | 5% | |
5 | 5 | 2 | 13 | 11 | 5% | |
7 | 9 | 9 | 18 | 25 | 9% | |
17 | 24 | 23 | 65 | 58 | 21% | |
13 | 16 | 26 | 69 | 71 | 24% | |
12 | 28 | 15 | 76 | 78 | 23% | |
5 | 5 | 9 | 25 | 25 | 9% | |
0 | 4 | 5 | 15 | 15 | 4% | |
500 ⋯ 700 | 0 | 1 | 0 | 1 | 1 | 1% |
700 ⋯ 1000 | 0 | 0 | 0 | 0 | 0 | <1% |
tfp | ||||||
Number of Gained Positions | ||||||
tfp Range | 1st | 2nd | 3rd | Rank:4th... 6th | Rank:7th... 9th | All (PDF) |
9 | 5 | 6 | 36 | 47 | 10% | |
10 | 9 | 19 | 35 | 37 | 10% | |
8 | 16 | 9 | 32 | 33 | 10% | |
13 | 12 | 10 | 36 | 31 | 10% | |
8 | 7 | 13 | 33 | 27 | 10% | |
6 | 15 | 10 | 23 | 24 | 10% | |
8 | 8 | 15 | 31 | 20 | 10% | |
12 | 14 | 7 | 22 | 33 | 10% | |
16 | 7 | 4 | 28 | 19 | 10% | |
9 | 7 | 7 | 23 | 28 | 10% |
cat vs. dur | ||||||||||
Number of Gained Positions for Each Time Stamp | ||||||||||
cat Range | 5 | 10 | 20 | 50 | 100 | 200 | 300 | 500 | 700 | 1000 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 ① | 0 | 0 | 1 ① | 1 ① | 0 | 0 | 0 | 0 | 0 | |
4 ① | 0 | 1 ① | 2 ② | 1 ① | 0 | 0 | 0 | 0 | 0 | |
3 | 1 | 1 | 4 | 4 | 7 ② | 2 | 0 | 0 | 0 | |
3 ① | 2 ① | 2 | 9 | 9 | 9 ① | 3 | 1 | 0 | 0 | |
0 | 3 ① | 2 | 13 ① | 13 | 16 | 7 | 2 | 0 | 0 | |
0 | 6 ① | 4 | 18 ① | 19 ① | 16 | 4 ① | 2 | 0 | 0 | |
4 ① | 2 | 5 ① | 19 ③ | 12 | 16 ② | 5 ② | 0 | 1 | 0 | |
4 ② | 6 | 19 ③ | 49 ⑤ | 42 ⑨ | 48 ⑥ | 14 ① | 13 | 0 | 0 | |
5 ① | 2 | 13 | 37 ② | 51 | 53 ① | 15 | 10 | 0 | 0 | |
5 ② | 7 | 8 | 15 | 45 ① | 41 | 16 | 13 | 1 | 0 | |
24 ⑪ | 5 ① | 9 ① | 9 | 5 | 5 | 2 | 2 | 0 | 0 | |
15 ⑥ | 1 | 5 | 8 | 3 | 1 | 0 | 0 | 0 | 0 | |
16 ⑧ | 3 ① | 4 ① | 10 ② | 4 | 2 | 0 | 1 | 0 | 0 | |
5 ① | 0 | 1 | 2 | 5 | 12 | 2 | 1 | 0 | 0 | |
7 ⑤ | 1 | 0 | 6 | 8 | 5 | 6 ① | 2 | 1 | 0 | |
1 ① | 0 | 1 | 1 | 0 | 5 | 0 | 0 | 1 | 0 | |
dur vs. tfp | ||||||||||
Number of Gained Positions for each tfp | ||||||||||
dur Range | 0.12 | 0.24 | 0.36 | 0.48 | 0.60 | 0.72 | 0.84 | 0.96 | 1.08 | 1.20 |
5 ④ | 9 ① | 10 ④ | 16 ⑤ | 8 ④ | 11 ② | 9 ④ | 11 ⑤ | 11 ⑦ | 7 ④ | |
10 | 7 ② | 2 | 5 ① | 4 | 5 | 2 | 3 ① | 0 | 1 ① | |
10 | 13 | 6 ① | 8 ① | 6 | 6 ① | 6 ① | 9 ① | 3 ① | 7 ① | |
20 ① | 26 ② | 17 ② | 32 ④ | 25 ② | 10 | 23 ③ | 15 ① | 18 ② | 17 | |
33 ③ | 28 ① | 17 | 19 | 22 ② | 15 ① | 16 | 28 | 23 ④ | 18 ② | |
28 | 22 ② | 39 ① | 28 ② | 18 | 19 ① | 23 | 24 ④ | 16 ② | 19 | |
7 ① | 10 ② | 9 | 7 | 7 | 12 ① | 8 | 5 | 5 | 6 ① | |
4 | 3 | 7 | 2 | 6 | 6 | 6 | 5 | 3 | 5 | |
500 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
700 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
cat | ||||||
Number of Gained Positions | ||||||
cat Range | worst 1% | worst 5% | worst 10% | worst 25% | worst 50% | all |
0 | 0 | 0 | 0 | 0 | <1% | |
8 | 10 | 9 | 6 | 4 | 2% | |
9 | 10 | 9 | 8 | 6 | 4% | |
13 | 14 | 16 | 15 | 16 | 12% | |
5 | 7 | 8 | 10 | 15 | 12% | |
2 | 5 | 5 | 11 | 14 | 11% | |
1 | 2 | 3 | 7 | 6 | 4% | |
1 | 2 | 4 | 4 | 3 | 2% | |
2 | 3 | 5 | 4 | 3 | 2% | |
2 | 2 | 2 | 2 | 1 | 2% | |
0 | 2 | 3 | 2 | 1 | 2% | |
0 | 3 | 5 | 4 | 3 | 4% | |
10 | 6 | 7 | 10 | 7 | 11% | |
12 | 11 | 9 | 8 | 8 | 12% | |
22 | 15 | 10 | 6 | 9 | 12% | |
8 | 4 | 3 | 2 | 3 | 4% | |
4 | 3 | 2 | 1 | 1 | 2% | |
0 | 0 | 0 | 0 | 0 | <1% | |
dur | ||||||
Number of Gained Positions | ||||||
dur Range | worst 1% | worst 5% | worst 10% | worst 25% | worst 50% | all |
10 | 7 | 5 | 4 | 3 | 5% | |
33 | 23 | 15 | 9 | 6 | 5% | |
31 | 26 | 22 | 15 | 11 | 9% | |
18 | 25 | 29 | 28 | 25 | 21% | |
4 | 10 | 15 | 21 | 23 | 24% | |
2 | 6 | 10 | 15 | 21 | 23% | |
0 | 2 | 4 | 5 | 7 | 9% | |
0 | 0 | 1 | 2 | 4 | 4% | |
500 ⋯ 700 | 0 | 0 | 0 | 0 | 0 | 1% |
700 ⋯ 1000 | 0 | 0 | 0 | 0 | 0 | <1% |
tfp | ||||||
Number of Gained Positions | ||||||
tfp Range | worst 1% | worst 5% | worst 10% | worst 25% | worst 50% | all (PDF) |
1 | 2 | 3 | 5 | 8 | 10% | |
2 | 5 | 5 | 7 | 9 | 10% | |
8 | 5 | 6 | 8 | 9 | 10% | |
8 | 7 | 8 | 9 | 10 | 10% | |
11 | 11 | 10 | 11 | 10 | 10% | |
11 | 11 | 11 | 11 | 10 | 10% | |
13 | 12 | 13 | 11 | 11 | 10% | |
15 | 13 | 13 | 11 | 11 | 10% | |
14 | 17 | 15 | 13 | 11 | 10% | |
18 | 17 | 16 | 13 | 11 | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherizadeh, A.; Zamani, S. Winner Strategies in a Simulated Stock Market. Int. J. Financial Stud. 2023, 11, 73. https://doi.org/10.3390/ijfs11020073
Taherizadeh A, Zamani S. Winner Strategies in a Simulated Stock Market. International Journal of Financial Studies. 2023; 11(2):73. https://doi.org/10.3390/ijfs11020073
Chicago/Turabian StyleTaherizadeh, Ali, and Shiva Zamani. 2023. "Winner Strategies in a Simulated Stock Market" International Journal of Financial Studies 11, no. 2: 73. https://doi.org/10.3390/ijfs11020073
APA StyleTaherizadeh, A., & Zamani, S. (2023). Winner Strategies in a Simulated Stock Market. International Journal of Financial Studies, 11(2), 73. https://doi.org/10.3390/ijfs11020073