A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale
Abstract
:1. Introduction
2. Experimental Section
- community pharmacists (CP, n = 183),
- hospital pharmacists (HP, n = 188),
- industrial pharmacists (IP, n = 93), and
- pharmacists in other occupations (regulatory affairs, consultancy, wholesale, ..., OP, n = 72).
- 1 = Not important = Can be ignored.
- 2 = Quite important =Valuable but not obligatory.
- 3 = Very important = Obligatory (with exceptions depending upon field of pharmacy practice).
- 4 = Essential = Obligatory.
3. Results and Discussion
3.1. Distribution of the Data
3.2. Presentation and Analysis of Within-Subgroup Data
3.3. Presentation and Analysis of Amongst-Subgroup Data
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 5–55. [Google Scholar]
- Stevens, S.S. On the theory of scales of measurement. Science 1946, 103, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, A.R. Clinical Biostatistics. Chapter 16: On Exorcising the Ghost of Gauss and the Curse of Kelvin; Mosby: Saint Louis, MO, USA, 1977. [Google Scholar]
- Kuzon, W.M.; Urbanchek, M.G.; McCabe, S. The seven deadly sins of statistical analysis. Ann. Plast. Surg. 1996, 37, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Knapp, T.R. Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nurs. Res. 1990, 39, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.L. Scales and statistics. Rev. Educ. Res. 1975, 45, 43–57. [Google Scholar] [CrossRef]
- Boneau, C.A. The effects of violations of assumptions underlying the t-test. Psychol. Bull. 1960, 57, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, S. Likert scales; how to (ab)use them. Med. Educ. 2004, 38, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.; De Paepe, K.; Sánchez Pozo, A.; Rekkas, D.; Volmer, D.; Hirvonen, J.; Bozic, B.; Skowron, A.; Mircioiu, C.; Marcincal, A.; et al. The PHAR-QA Project: Competence Framework for Pharmacy Practice—First Steps. The Results of the European Network Delphi Round 1. Pharmacy 2015, 3, 307–329. [Google Scholar] [CrossRef]
- Marz, R.; Dekker, F.W.; van Schravendijk, C.; O’Flynn, S.; Ross, M.T. Tuning research competencies for Bologna three cycles in medicine: Report of a MEDINE2 European consensus survey. Perspect. Med. Educ. 2013, 2, 181–195. [Google Scholar] [CrossRef] [PubMed]
- GraphPad Prism 7 for Biostatistics, Curve Fitting and Scientific Graphing. 2017. Available online: https://www.graphpad.com/ (accessed on 10 January 2017).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P. Non-normality and tests on variances. Biometrika 1953, 40, 318–335. [Google Scholar] [CrossRef]
- Gaito, J. Non-parametric methods in psychological research. Psychol. Rep. 1959, 5, 115–125. [Google Scholar] [CrossRef]
- Glass, G.V.; Peckham, P.D.; Sanders, J.R. Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Rev. Educ. Res. 1972, 42, 237–288. [Google Scholar] [CrossRef]
- Carifio, J.C.; Perla, R.J. Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. J. Soc. Sci. 2007, 3, 106–116. [Google Scholar] [CrossRef]
- Curtis, M.J.; Bond, R.A.; Spina, D.; Ahluwalia, A.; Alexander, S.P.A.; Giembycz, M.A.; Gilchrist, A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; et al. Experimental design and analysis and their reporting: New guidance for publication in BJP. Br. J. Pharmacol. 2015, 172, 3461–3471. [Google Scholar] [CrossRef] [PubMed]
Subgroup | CP | HP | IP | OP |
---|---|---|---|---|
Numbers of inverted j distributions | 24 | 25 | 39 | 28 |
Numbers of linear/exponential distributions | 26 | 25 | 11 | 22 |
Mean of values Rank 4–Rank 3 | 0.2 | 1.6 | −7.7 | −1.1 |
Standard deviation | 27 | 37 | 15 | 12 |
Kolmogorov–Smirnov (KS) normality test | ||||
KS distance | 0.085 | 0.11 | 0.12 | 0.12 |
Passed normality test (alpha = 0.05)? | Yes | Yes | Yes | Yes |
Parametric | |||||
1-Way ANOVA | Sum of Squares | Degrees of Freedom | Mean Square | F (49, 8045) | p-Value |
Treatment (competencies) | 611.2 | 49 | 12.47 | 22.99 | p < 0.0001 |
Residual | 4365 | 8045 | 0.5426 | ||
Total | 4976 | 8094 | |||
Non-Parametric | |||||
Kruskal–Wallis Test | |||||
p-value (for competencies) | <0.0001 | ||||
Kruskal–Wallis statistic | 720.8 |
Dunn | Dunn | |||
---|---|---|---|---|
Significant | Not significant | Total | ||
Bonferroni | Significant | 393 | 76 | 469 |
Bonferroni | Not significant | 0 | 756 | 756 |
Total | 393 | 832 | 1225 |
(a) | |||||||||||||
ANOVA Table | Sum of Squares | % of Total Variation | Degrees of Freedom | Mean Square | F | p | |||||||
Interaction: competency–subgroup | 289 | 2.1 | 147 | 2.0 | F (147, 22,872) = 3.6 | p < 0.0001 | |||||||
Competency | 1032 | 7.3 | 49 | 21 | F (49, 22,872) = 38 | p < 0.0001 | |||||||
Subgroup | 17 | 0.12 | 3 | 5.7 | F (3, 22,872) = 10 | p < 0.0001 | |||||||
Residual | 12,517 | 22,872 | 0.55 | ||||||||||
Sidak’s Multiple Comparisons Test, Comparisons with CP Only Are Given | Difference of Means | 95% Confidence Limits of Difference | p-Value Summary | ||||||||||
CP versus HP | 0.0087 | −0.019 to 0.036 | Not significant | ||||||||||
CP versus IP | 0.0630 | 0.029 to 0.098 | p < 0.0001 | ||||||||||
CP versus OP | 0.0520 | 0.014 to 0.090 | p < 0.01 | ||||||||||
(b) | |||||||||||||
Friedman Statistic | 10.05 | ||||||||||||
p-value | 0.0182 | ||||||||||||
Number of subgroups | 4 | ||||||||||||
Dunn’s Multiple Comparisons Test, Comparisons with CP Only Are Given | Rank Sum 1 | Rank Sum 2 | Sum Difference | N1 | N2 | p | |||||||
CP versus HP | 139.0 | 139.0 | 0.0 | 50 | 50 | p > 0.05 | |||||||
CP versus IP | 139.0 | 106.0 | 33.00 | 50 | 50 | p > 0.05 | |||||||
CP versus OP | 139.0 | 116.0 | 23.00 | 50 | 50 | p > 0.05 |
Competency | t-Test | Chi-Square |
---|---|---|
21 | 3.49 | 17.2 |
22 | 4.99 | 22.9 |
23 | 5.18 | 27.9 |
28 | 2.93 | 10.4 |
29 | 3.63 | 13.7 |
30 | 3.47 | 12.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mircioiu, C.; Atkinson, J. A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale. Pharmacy 2017, 5, 26. https://doi.org/10.3390/pharmacy5020026
Mircioiu C, Atkinson J. A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale. Pharmacy. 2017; 5(2):26. https://doi.org/10.3390/pharmacy5020026
Chicago/Turabian StyleMircioiu, Constantin, and Jeffrey Atkinson. 2017. "A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale" Pharmacy 5, no. 2: 26. https://doi.org/10.3390/pharmacy5020026
APA StyleMircioiu, C., & Atkinson, J. (2017). A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale. Pharmacy, 5(2), 26. https://doi.org/10.3390/pharmacy5020026