Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales
Abstract
:1. Introduction
2. Microbiological Properties
2.1. What Are AmpC Enzymes?
2.2. How Can AmpC Enzymes Be Classified?
- (1)
- Inducible chromosomal AmpCs.
- (2)
- Non-inducible chromosomal AmpCs.
- (3)
- Plasmid-encoded AmpCs.
2.3. Which Enterobacterales Produce Inducible Chromosomal AmpCs?
2.4. Which Antibiotics Can Induce AmpC Derepression?
- Potent inducers, susceptible to hydrolysis: aminopenicillins (ampicillin, amoxicillin), amoxicillin/clavulanic acid, first-generation cephalosporins, and cephamycins (cefoxitin) are potent inducers of AmpC and are rapidly hydrolyzed by AmpC, even when inducible chromosomal AmpC is not derepressed.
- Weak inducers, susceptible to hydrolysis: third-generation cephalosporins, piperacillin/tazobactam, and aztreonam are weak inducers but are substrates of AmpC. Increased minimal inhibitory concentrations (MICs) are observed in the absence of AmpC derepression, and clinically relevant resistance is present in cases of derepression.
- Potent inducers, resistant to hydrolysis: carbapenems are potent inducers, but like cefepime, they remain resistant to hydrolysis through the formation of a stable acyl/enzyme complex.
- Weak inducers, resistant to hydrolysis: cefepime is a weak AmpC inducer and has the advantage of withstanding AmpC hydrolysis through the formation of a stable acyl/enzyme complex that determines low enzyme affinity and low hydrolysis rate.
3. Treatment
3.1. How to Treat Species at Moderate-to-High Risk of AmpC Derepression?
3.1.1. Third-Generation Cephalosporins
3.1.2. Cefepime
3.1.3. Piperacillin/Tazobactam
3.1.4. Ceftolozane/Tazobactam, New Beta-Lactam/Beta-Lactamase Inhibitor Combinations, and Cefiderocol
3.1.5. Non-Beta-Lactam Antibiotics
3.2. What Is the Treatment for Species at Low Risk of AmpC Derepression?
4. Future Perspectives
- (1)
- The exact risk of derepression in different species and related to different antibiotics (including newer molecules, such as ceftolozane/tazobactam, new BL-BLICs, and cefiderocol);
- (2)
- The clinical efficacy of 3GCs and piperacillin/tazobactam, depending on the clinical context and causative pathogen (low or moderate-to-high risk of derepression). This would ideally require data from well-conducted RCTs;
- (3)
- The role of cefepime and ertapenem, compared to meropenem or imipenem/cilastatin, in difficult-to-treat infections (e.g., BJIs), high-inoculum infections (e.g., undrainable abscesses), and very severe infections (e.g., septic shock);
- (4)
- The role of ceftolozane/tazobactam;
- (5)
- The role of non-beta-lactam options beyond UTIs and oral step-down;
- (6)
- The eventual need for escalation when the clinical isolate becomes available but the patient has already achieved clinical stability and has been empirically treated with second-line agents, such as 3GC;
- (7)
- The role of de-escalation to 3GC (particularly for prolonged treatment courses) when the patient has already reached clinical stability and is not eligible for oral step-down.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A Functional Classification Scheme for Beta-Lactamases and Its Correlation with Molecular Structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Doi, Y.; Bonomo, R.A.; Johnson, J.K.; Simner, P.J.; Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-Resistant World. Clin. Infect. Dis. 2019, 69, 1446–1455. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef]
- Oliver, A.; Rojo-Molinero, E.; Arca-Suarez, J.; Beşli, Y.; Bogaerts, P.; Cantón, R.; Cimen, C.; Croughs, P.D.; Denis, O.; Giske, C.G.; et al. Pseudomonasaeruginosa Antimicrobial Susceptibility Profiles, Resistance Mechanisms and International Clonal Lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin. Microbiol. Infect. 2024, 30, 469–480. [Google Scholar] [CrossRef]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef]
- Ambler, R.P. The Structure of Beta-Lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of Beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Philippon, A.; Arlet, G.; Labia, R.; Iorga, B.I. Class C β-Lactamases: Molecular Characteristics. Clin. Microbiol. Rev. 2022, 35, e0015021. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Jeong, S.H. Class D β-Lactamases. J. Antimicrob. Chemother. 2021, 76, 836–864. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Laupland, K.B. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: An Emerging Public-Health Concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E.P.; Chain, E. An Enzyme from Bacteria Able to Destroy Penicillin. 1940. Rev. Infect. Dis. 1988, 10, 677–678. [Google Scholar] [PubMed]
- Reuland, E.A.; Halaby, T.; Hays, J.P.; de Jongh, D.M.C.; Snetselaar, H.D.R.; van Keulen, M.; Elders, P.J.M.; Savelkoul, P.H.M.; Vandenbroucke-Grauls, C.M.J.E.; Al Naiemi, N. Plasmid-Mediated AmpC: Prevalence in Community-Acquired Isolates in Amsterdam, the Netherlands, and Risk Factors for Carriage. PLoS ONE 2015, 10, e0113033. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, M.; Zhang, X.; Lu, J.; Tang, X.; Gao, Y. Detection of AmpC β-Lactamases in Gram-Negative Bacteria. Heliyon 2022, 8, e12245. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Medeiros, A.A.; Jacoby, G.A. Novel Plasmid-Mediated Beta-Lactamase (MIR-1) Conferring Resistance to Oxyimino- and Alpha-Methoxy Beta-Lactams in Clinical Isolates of Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 1990, 34, 2200–2209. [Google Scholar] [CrossRef]
- Philippon, A.; Arlet, G.; Jacoby, G.A. Plasmid-Determined AmpC-Type Beta-Lactamases. Antimicrob. Agents Chemother. 2002, 46, 1–11. [Google Scholar] [CrossRef]
- Coertze, R.D.; Bezuidenhout, C.C. Global Distribution and Current Research of AmpC Beta-Lactamase Genes in Aquatic Environments: A Systematic Review. Environ. Pollut. 2019, 252, 1633–1642. [Google Scholar] [CrossRef]
- Duin, D.v.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-Generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Interplay between β-Lactamases and New β-Lactamase Inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, L.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.A.; Sanders, C.C. Diverse Potential of Beta-Lactamase Inhibitors to Induce Class I Enzymes. Antimicrob. Agents Chemother. 1990, 34, 156–158. [Google Scholar] [CrossRef]
- Guérin, F.; Isnard, C.; Cattoir, V.; Giard, J.C. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter Cloacae Complex. Antimicrob. Agents Chemother. 2015, 59, 7753–7761. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, F.; Westman, L.; Normark, S. Regulatory Components in Citrobacter Freundii ampC Beta-Lactamase Induction. Proc. Natl. Acad. Sci. USA 1985, 82, 4620–4624. [Google Scholar] [CrossRef]
- Schmidtke, A.J.; Hanson, N.D. Model System to Evaluate the Effect of ampD Mutations on AmpC-Mediated Beta-Lactam Resistance. Antimicrob. Agents Chemother. 2006, 50, 2030–2037. [Google Scholar] [CrossRef]
- Kaneko, K.; Okamoto, R.; Nakano, R.; Kawakami, S.; Inoue, M. Gene Mutations Responsible for Overexpression of AmpC Beta-Lactamase in Some Clinical Isolates of Enterobacter Cloacae. J. Clin. Microbiol. 2005, 43, 2955–2958. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-H.; Lee, J.E.; Park, S.J.; Choi, S.-H.; Lee, S.-O.; Jeong, J.-Y.; Kim, M.-N.; Woo, J.H.; Kim, Y.S. Emergence of Antibiotic Resistance during Therapy for Infections Caused by Enterobacteriaceae Producing AmpC Beta-Lactamase: Implications for Antibiotic Use. Antimicrob. Agents Chemother. 2008, 52, 995–1000. [Google Scholar] [CrossRef]
- Chow, J.W.; Fine, M.J.; Shlaes, D.M.; Quinn, J.P.; Hooper, D.C.; Johnson, M.P.; Ramphal, R.; Wagener, M.M.; Miyashiro, D.K.; Yu, V.L. Enterobacter Bacteremia: Clinical Features and Emergence of Antibiotic Resistance during Therapy. Ann. Intern. Med. 1991, 115, 585–590. [Google Scholar] [CrossRef]
- Kaye, K.S.; Cosgrove, S.; Harris, A.; Eliopoulos, G.M.; Carmeli, Y. Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacter Spp. Antimicrob. Agents Chemother. 2001, 45, 2628–2630. [Google Scholar] [CrossRef]
- Jacobson, K.L.; Cohen, S.H.; Inciardi, J.F.; King, J.H.; Lippert, W.E.; Iglesias, T.; VanCouwenberghe, C.J. The Relationship between Antecedent Antibiotic Use and Resistance to Extended-Spectrum Cephalosporins in Group I Beta-Lactamase-Producing Organisms. Clin. Infect. Dis. 1995, 21, 1107–1113. [Google Scholar] [CrossRef]
- Johnson, C.C.; Livornese, L.; Gold, M.J.; Pitsakis, P.G.; Taylor, S.; Levison, M.E. Activity of Cefepime against Ceftazidime-Resistant Gram-Negative Bacilli Using Low and High Inocula. J. Antimicrob. Chemother. 1995, 35, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Forward, K.R.; Willey, B.M.; Low, D.E.; McGeer, A.; Kapala, M.A.; Kapala, M.M.; Burrows, L.L. Molecular Mechanisms of Cefoxitin Resistance in Escherichia Coli from the Toronto Area Hospitals. Diagn. Microbiol. Infect. Dis. 2001, 41, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Honoré, N.; Nicolas, M.H.; Cole, S.T. Inducible Cephalosporinase Production in Clinical Isolates of Enterobacter Cloacae Is Controlled by a Regulatory Gene That Has Been Deleted from Escherichia Coli. EMBO J. 1986, 5, 3709–3714. [Google Scholar] [CrossRef] [PubMed]
- Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.; Giger, J.; Böttger, E.C.; Zbinden, R.; Bloemberg, G.V. Detection of AmpC Beta-Lactamase in Escherichia Coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. J. Clin. Microbiol. 2011, 49, 2924–2932. [Google Scholar] [CrossRef]
- Hall, B.G.; Barlow, M. Evolution of the Serine Beta-Lactamases: Past, Present and Future. Drug Resist. Updat. 2004, 7, 111–123. [Google Scholar] [CrossRef]
- Black, J.A.; Thomson, K.S.; Buynak, J.D.; Pitout, J.D.D. Evaluation of Beta-Lactamase Inhibitors in Disk Tests for Detection of Plasmid-Mediated AmpC Beta-Lactamases in Well-Characterized Clinical Strains of Klebsiella Spp. J. Clin. Microbiol. 2005, 43, 4168–4171. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Alder, L.; Paterson, D.L. Antimicrobial Susceptibility Reporting and Treatment Selection for AmpC-Producing Enterobacteriaceae: What Do Microbiologists and Infectious Disease Practitioners Actually Practice? Pathology 2015, 47, 386–388. [Google Scholar] [CrossRef]
- Kohlmann, R.; Bähr, T.; Gatermann, S.G. Species-Specific Mutation Rates for ampC Derepression in Enterobacterales with Chromosomally Encoded Inducible AmpC β-Lactamase. J. Antimicrob. Chemother. 2018, 73, 1530–1536. [Google Scholar] [CrossRef]
- Hilty, M.; Sendi, P.; Seiffert, S.N.; Droz, S.; Perreten, V.; Hujer, A.M.; Bonomo, R.A.; Mühlemann, K.; Endimiani, A. Characterisation and Clinical Features of Enterobacter Cloacae Bloodstream Infections Occurring at a Tertiary Care University Hospital in Switzerland: Is Cefepime Adequate Therapy? Int. J. Antimicrob. Agents 2013, 41, 236–249. [Google Scholar] [CrossRef]
- Mizrahi, A.; Delerue, T.; Morel, H.; Le Monnier, A.; Carbonnelle, E.; Pilmis, B.; Zahar, J.R.; on behalf the Saint-Joseph/Avicenna Study Group. Infections Caused by Naturally AmpC-Producing Enterobacteriaceae: Can We Use Third-Generation Cephalosporins? A Narrative Review. Int. J. Antimicrob. Agents 2020, 55, 105834. [Google Scholar] [CrossRef]
- Power, P.; Galleni, M.; Ayala, J.A.; Gutkind, G. Biochemical and Molecular Characterization of Three New Variants of AmpC Beta-Lactamases from Morganella Morganii. Antimicrob. Agents Chemother. 2006, 50, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Tascini, C.; Cei, M.; Sozio, E.; Rossolini, G.M. AmpC β-Lactamase-Producing Enterobacterales: What a Clinician Should Know. Infection 2019, 47, 363–375. [Google Scholar] [CrossRef]
- Sanders, C.C.; Bradford, P.A.; Ehrhardt, A.F.; Bush, K.; Young, K.D.; Henderson, T.A.; Sanders, W.E. Penicillin-Binding Proteins and Induction of AmpC Beta-Lactamase. Antimicrob. Agents Chemother. 1997, 41, 2013–2015. [Google Scholar] [CrossRef] [PubMed]
- Fung-Tomc, J.C.; Gradelski, E.; Huczko, E.; Dougherty, T.J.; Kessler, R.E.; Bonner, D.P. Differences in the Resistant Variants of Enterobacter Cloacae Selected by Extended-Spectrum Cephalosporins. Antimicrob. Agents Chemother. 1996, 40, 1289–1293. [Google Scholar] [CrossRef]
- Hancock, R.E.; Bellido, F. Antibacterial in Vitro Activity of Fourth Generation Cephalosporins. J. Chemother. 1996, 8 (Suppl. S2), 31–36. [Google Scholar]
- Stewart, A.G.; Paterson, D.L.; Young, B.; Lye, D.C.; Davis, J.S.; Schneider, K.; Yilmaz, M.; Dinleyici, R.; Runnegar, N.; Henderson, A.; et al. Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase-Producing Enterobacter Spp, Citrobacter Freundii, Morganella Morganii, Providencia Spp, or Serratia Marcescens: A Pilot Multicenter Randomized Controlled Trial (MERINO-2). Open Forum Infect. Dis. 2021, 8, ofab387. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Tambyah, P.A.; Paterson, D.L. β-Lactam and β-Lactamase Inhibitor Combinations in the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: Time for a Reappraisal in the Era of Few Antibiotic Options? Lancet Infect. Dis. 2015, 15, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Ng, T.M.; Chew, K.L.; Yong, J.; Wu, J.E.; Yap, M.Y.; Heng, S.T.; Ng, W.H.W.; Wan, S.; Cheok, S.J.H.; et al. Outcomes of Treating AmpC-Producing Enterobacterales Bacteraemia with Carbapenems vs. Non-Carbapenems. Int. J. Antimicrob. Agents 2020, 55, 105860. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Lee, C.-C.; Li, C.-W.; Li, M.-C.; Chen, P.-L.; Chang, C.-M.; Ko, W.-C. Cefepime Therapy for Monomicrobial Enterobacter Cloacae Bacteremia: Unfavorable Outcomes in Patients Infected by Cefepime-Susceptible Dose-Dependent Isolates. Antimicrob. Agents Chemother. 2015, 59, 7558–7563. [Google Scholar] [CrossRef]
- Marcos, M.; Iñurrieta, A.; Soriano, A.; Martínez, J.A.; Almela, M.; Marco, F.; Mensa, J. Effect of Antimicrobial Therapy on Mortality in 377 Episodes of Enterobacter Spp. Bacteraemia. J. Antimicrob. Chemother. 2008, 62, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, V.P.; Pitout, J.D.D.; Dalton, B.; Gregson, D.B.; Ross, T.; Laupland, K.B. Clinical and Microbiological Characteristics of Bloodstream Infections Due to AmpC β-Lactamase Producing Enterobacteriaceae: An Active Surveillance Cohort in a Large Centralized Canadian Region. BMC Infect. Dis. 2014, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Huh, K.; Kang, C.-I.; Kim, J.; Cho, S.Y.; Ha, Y.E.; Joo, E.-J.; Chung, D.R.; Lee, N.Y.; Peck, K.R.; Song, J.-H. Risk Factors and Treatment Outcomes of Bloodstream Infection Caused by Extended-Spectrum Cephalosporin-Resistant Enterobacter Species in Adults with Cancer. Diagn. Microbiol. Infect. Dis. 2014, 78, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Chan, M.-C.; Yang, Y.-S.; Lee, Y.; Yeh, K.-M.; Lin, J.-C.; Chang, F.-Y. Clinical Manifestations and Prognostic Factors of Morganella Morganii Bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Davin-Regli, A.; Lavigne, J.-P.; Pagès, J.-M. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin. Microbiol. Rev. 2019, 32, e00002-19. [Google Scholar] [CrossRef]
- Siedner, M.J.; Galar, A.; Guzmán-Suarez, B.B.; Kubiak, D.W.; Baghdady, N.; Ferraro, M.J.; Hooper, D.C.; O’Brien, T.F.; Marty, F.M. Cefepime vs Other Antibacterial Agents for the Treatment of Enterobacter Species Bacteremia. Clin. Infect. Dis. 2014, 58, 1554–1563. [Google Scholar] [CrossRef]
- O’Neal, C.S.; O’Neal, H.R.; Daniels, T.L.; Talbot, T.R. Treatment Outcomes in Patients with Third-Generation Cephalosporin-Resistant Enterobacter Bacteremia. Scand. J. Infect. Dis. 2012, 44, 726–732. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; El Ghali, A.; Lucas, K.; Witucki, P.; Rebold, N.; Holger, D.J.; Veve, M.P.; Rybak, M.J. High-Dose Cefepime vs Carbapenems for Bacteremia Caused by Enterobacterales with Moderate to High Risk of Clinically Significant AmpC β-Lactamase Production. Open Forum Infect. Dis. 2023, 10, ofad034. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Paterson, D.L.; Pakstis, D.L.; Adams-Haduch, J.M.; Sandkovsky, G.; Sordillo, E.; Polsky, B.; Peleg, A.Y.; Bhussar, M.K.; Doi, Y. Risk Factors and Outcome of Extended-Spectrum β-Lactamase-Producing Enterobacter Cloacae Bloodstream Infections. Int. J. Antimicrob. Agents 2011, 37, 26–32. [Google Scholar] [CrossRef]
- Moy, S.; Sharma, R. Treatment Outcomes in Infections Caused by “SPICE” (Serratia, Pseudomonas, Indole-Positive Proteus, Citrobacter, and Enterobacter) Organisms: Carbapenem versus Noncarbapenem Regimens. Clin. Ther. 2017, 39, 170–176. [Google Scholar] [CrossRef]
- Erlanger, D.; Assous, M.V.; Wiener-Well, Y.; Yinnon, A.M.; Ben-Chetrit, E. Clinical Manifestations, Risk Factors and Prognosis of Patients with Morganella Morganii Sepsis. J. Microbiol. Immunol. Infect. 2019, 52, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Matsumura, Y.; Yamamoto, M.; Nagao, M.; Takakura, S.; Ichiyama, S. Clinical and Microbiologic Characteristics of Cefotaxime-Non-Susceptible Enterobacteriaceae Bacteremia: A Case Control Study. BMC Infect. Dis. 2017, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.P.; Lee, R.S.; Cheng, A.P.; De L’étoile-Morel, S.; Demir, K.; Yansouni, C.P.; Harris, P.; Mcdonald, E.G.; Lee, T.C. Beta-Lactam/Beta-Lactamase Inhibitor Therapy for Potential AmpC-Producing Organisms: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2019, 6, ofz248. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, L.M.; Kuti, J.L.; Nicolau, D.P.; Nailor, M.D. Clinical Comparison of Ertapenem and Cefepime for Treatment of Infections Caused by AmpC Beta-Lactamase-Producing Enterobacteriaceae. Scand. J. Infect. Dis. 2014, 46, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Delory, T.; Bernier, J.; Villa, A.; Chaibi, K.; Escaut, L.; Contejean, A.; Bercot, B.; Robert, J.; El Alaoui, F.; et al. Effectiveness of Third-Generation Cephalosporins or Piperacillin Compared with Cefepime or Carbapenems for Severe Infections Caused by Wild-Type AmpC β-Lactamase-Producing Enterobacterales: A Multi-Centre Retrospective Propensity-Weighted Study. Int. J. Antimicrob. Agents 2023, 62, 106809. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Wei, J.Y.; Shen, A.W.; Abdile, A.A.; Paynter, S.; Huxley, R.R.; Pandeya, N.; Doi, Y.; Huh, K.; O’Neal, C.S.; et al. Carbapenems versus Alternative Antibiotics for the Treatment of Bloodstream Infections Caused by Enterobacter, Citrobacter or Serratia Species: A Systematic Review with Meta-Analysis. J. Antimicrob. Chemother. 2016, 71, 296–306. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; Waele, J.d.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Shah, P.M. Parenteral Carbapenems. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 175–180. [Google Scholar] [CrossRef]
- Tamma, P.D.; Girdwood, S.C.T.; Gopaul, R.; Tekle, T.; Roberts, A.A.; Harris, A.D.; Cosgrove, S.E.; Carroll, K.C. The Use of Cefepime for Treating AmpC β-Lactamase-Producing Enterobacteriaceae. Clin. Infect. Dis. 2013, 57, 781–788. [Google Scholar] [CrossRef]
- Ávila-Núñez, M.; Lima, O.; Sousa, A.; Represa, M.; Rubiñán, P.; Celestino, P.; Garrido-Ventín, M.; García-Formoso, L.; Vasallo-Vidal, F.; Martinez-Lamas, L.; et al. Carbapenem Alternatives for Treatment of Bloodstream Infections Due to AmpC Producing Enterobacterales. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 75. [Google Scholar] [CrossRef]
- Livermore, D.M.; Oakton, K.J.; Carter, M.W.; Warner, M. Activity of Ertapenem (MK-0826) versus Enterobacteriaceae with Potent Beta-Lactamases. Antimicrob. Agents Chemother. 2001, 45, 2831–2837. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Dallow, J.W.T.; Hill, R.L.R.; Palepou, M.-F.I.; Pike, R.; Ward, M.E.; Warner, M.; Livermore, D.M. Ertapenem Resistance among Klebsiella and Enterobacter Submitted in the UK to a Reference Laboratory. Int. J. Antimicrob. Agents 2007, 29, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Robin, F.; Auzou, M.; Bonnet, R.; Lebreuilly, R.; Isnard, C.; Cattoir, V.; Guérin, F. In Vitro Activity of Ceftolozane-Tazobactam against Enterobacter Cloacae Complex Clinical Isolates with Different β-Lactam Resistance Phenotypes. Antimicrob. Agents Chemother. 2018, 62, e00675-18. [Google Scholar] [CrossRef]
- de Lastours, V.; Goulenok, T.; Guérin, F.; Jacquier, H.; Eyma, C.; Chau, F.; Cattoir, V.; Fantin, B. Ceftriaxone Promotes the Emergence of AmpC-Overproducing Enterobacteriaceae in Gut Microbiota from Hospitalized Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 417–421. [Google Scholar] [CrossRef]
- Carrié, C.; Bardonneau, G.; Petit, L.; Ouattara, A.; Gruson, D.; Pereira, B.; Biais, M. Piperacillin-Tazobactam Should Be Preferred to Third-Generation Cephalosporins to Treat Wild-Type Inducible AmpC-Producing Enterobacterales in Critically Ill Patients with Hospital or Ventilator-Acquired Pneumonia. J. Crit. Care 2020, 56, 6–11. [Google Scholar] [CrossRef]
- Sapozhnikov, J.; Huang, A.; Zeeck, K.; Gibble, A. Comparison of Outcomes in Urinary Tract Infections Caused by AmpC-Harboring Organisms Treated with AmpC Stable versus AmpC Susceptible Agents. Diagn. Microbiol. Infect. Dis. 2021, 101, 115472. [Google Scholar] [CrossRef]
- Mounier, R.; Le Guen, R.; Woerther, P.-L.; Nacher, M.; Bonnefon, C.; Mongardon, N.; Langeron, O.; Levesque, E.; Couffin, S.; Houcke, S.; et al. Clinical Outcome of Wild-Type AmpC-Producing Enterobacterales Infection in Critically Ill Patients Treated with β-Lactams: A Prospective Multicenter Study. Ann. Intensive Care 2022, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing: Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 8 January 2024).
- CLSI M100. Performance Standards for Antimicrobial Susceptibility Testing, 33rd Edition. Available online: https://clsi.org/ast-2023/ (accessed on 8 January 2024).
- Hoellinger, B.; Kaeuffer, C.; Boyer, P.; Lefebvre, N.; Hansmann, Y.; Robert, A.; Severac, F.; Gravet, A.; Danion, F.; Ruch, Y.; et al. Cefepime vs Carbapenems for Treating Third-Generation Cephalosporin-Resistant AmpC β-Lactamase-Hyperproducing Enterobacterales Bloodstream Infections: A Multicenter Retrospective Study. Int. J. Infect. Dis. 2023, 134, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.; Bellido, F. Factors Involved in the Enhanced Efficacy against Gram-Negative Bacteria of Fourth Generation Cephalosporins. J. Antimicrob. Chemother. 1992, 29 (Suppl. A), 1–6. [Google Scholar] [CrossRef]
- Limaye, A.P.; Gautom, R.K.; Black, D.; Fritsche, T.R. Rapid Emergence of Resistance to Cefepime during Treatment. Clin. Infect. Dis. 1997, 25, 339–340. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing: MIC and Zone Diameter Distributions and ECOFFs. Available online: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs (accessed on 25 September 2023).
- Hareza, D.; Simner, P.J.; Bergman, Y.; Jacobs, E.; Cosgrove, S.E.; Tamma, P.D. The Frequency of Extended-Spectrum β-Lactamase Genes Harbored by Enterobacterales Isolates at High Risk for Clinically Significant Chromosomal ampC Expression. Open Forum Infect. Dis. 2023, 10, ofad175. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, P.M.; Warren, R.E.; Livermore, D.M.; McNulty, C.A.M.; Enoch, D.A.; Otter, J.A.; Wilson, A.P.R. Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacteria: Report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J. Antimicrob. Chemother. 2018, 73, iii2–iii78. [Google Scholar] [CrossRef]
- Charrel, R.N.; Pagès, J.M.; De Micco, P.; Mallea, M. Prevalence of Outer Membrane Porin Alteration in Beta-Lactam-Antibiotic-Resistant Enterobacter Aerogenes. Antimicrob. Agents Chemother. 1996, 40, 2854–2858. [Google Scholar] [CrossRef]
- Herrmann, J.; Burgener-Gasser, A.-V.; Goldenberger, D.; Roth, J.; Weisser, M.; Tamma, P.D.; Tschudin-Sutter, S. Cefepime versus Carbapenems for Treatment of AmpC Beta-Lactamase-Producing Enterobacterales Bloodstream Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 213–221. [Google Scholar] [CrossRef]
- Kawai, A.; McElheny, C.L.; Iovleva, A.; Kline, E.G.; Sluis-Cremer, N.; Shields, R.K.; Doi, Y. Structural Basis of Reduced Susceptibility to Ceftazidime-Avibactam and Cefiderocol in Enterobacter Cloacae Due to AmpC R2 Loop Deletion. Antimicrob. Agents Chemother. 2020, 64, e00198-20. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Fernández-Echauri, P.; Fernández-Cuenca, F.; Diaz de Alba, P.; Briales, A.; Pascual, A. Genetic Characterization of an Extended-Spectrum AmpC Cephalosporinase with Hydrolysing Activity against Fourth-Generation Cephalosporins in a Clinical Isolate of Enterobacter Aerogenes Selected in Vivo. J. Antimicrob. Chemother. 2012, 67, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Mammeri, H.; Poirel, L.; Bemer, P.; Drugeon, H.; Nordmann, P. Resistance to Cefepime and Cefpirome Due to a 4-Amino-Acid Deletion in the Chromosome-Encoded AmpC Beta-Lactamase of a Serratia Marcescens Clinical Isolate. Antimicrob. Agents Chemother. 2004, 48, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Maan, G.; Keitoku, K.; Kimura, N.; Sawada, H.; Pham, A.; Yeo, J.; Hagiya, H.; Nishimura, Y. Cefepime-Induced Neurotoxicity: Systematic Review. J. Antimicrob. Chemother. 2022, 77, 2908–2921. [Google Scholar] [CrossRef]
- Qian, E.T.; Casey, J.D.; Wright, A.; Wang, L.; Shotwell, M.S.; Siemann, J.K.; Dear, M.L.; Stollings, J.L.; Lloyd, B.D.; Marvi, T.K.; et al. Cefepime vs Piperacillin-Tazobactam in Adults Hospitalized with Acute Infection: The ACORN Randomized Clinical Trial. JAMA 2023, 330, 1557–1567. [Google Scholar] [CrossRef]
- Venugopalan, V.; Casaus, D.; Kainz, L.; Slaton, C.N.; Hurst, N.; Bruzzone, M.; Hu, C.; Sword, G.; Cherabuddi, K.; Iovine, N.; et al. Use of Therapeutic Drug Monitoring to Characterize Cefepime-Related Neurotoxicity. Pharmacotherapy 2023, 43, 6–14. [Google Scholar] [CrossRef]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddins, M.J.; Shi, Q.; Whittier, S.; Gomez-Simmonds, A.; Uhlemann, A.-C. Piperacillin-Tazobactam versus Other Antibacterial Agents for Treatment of Bloodstream Infections Due to AmpC β-Lactamase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00276-17. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F. Elaboration of a Consensual Definition of De-Escalation Allowing a Ranking of β-Lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Deng, C.-Y.; Calvachi-Prieto, P.; Armengol de la Hoz, M.Á.; Khazi-Syed, A.; Chen, C.; Scurlock, C.; Becker, C.D.; Johnson, A.E.W.; Celi, L.A.; et al. A Large-Scale Multicenter Retrospective Study on Nephrotoxicity Associated with Empiric Broad-Spectrum Antibiotics in Critically Ill Patients. Chest 2023, 164, 355–368. [Google Scholar] [CrossRef]
- Mullins, B.P.; Kramer, C.J.; Bartel, B.J.; Catlin, J.S.; Gilder, R.E. Comparison of the Nephrotoxicity of Vancomycin in Combination with Cefepime, Meropenem, or Piperacillin/Tazobactam: A Prospective, Multicenter Study. Ann. Pharmacother. 2018, 52, 639–644. [Google Scholar] [CrossRef]
- Buckley, M.S.; Komerdelj, I.A.; D’Alessio, P.A.; Rangan, P.; Agarwal, S.K.; Tinta, N.C.; Martinez, B.K.; Ziadat, D.S.; Yerondopoulos, M.J.; Kobic, E.; et al. Vancomycin with Concomitant Piperacillin/Tazobactam vs. Cefepime or Meropenem Associated Acute Kidney Injury in the Critically Ill: A Multicenter Propensity Score-Matched Study. J. Crit. Care 2022, 67, 134–140. [Google Scholar] [CrossRef]
- Rutter, W.C.; Cox, J.N.; Martin, C.A.; Burgess, D.R.; Burgess, D.S. Nephrotoxicity during Vancomycin Therapy in Combination with Piperacillin-Tazobactam or Cefepime. Antimicrob. Agents Chemother. 2017, 61, e02089-16. [Google Scholar] [CrossRef]
- García-Fernández, S.; García-Castillo, M.; Melo-Cristino, J.; Pinto, M.F.; Gonçalves, E.; Alves, V.; Vieira, A.R.; Ramalheira, E.; Sancho, L.; Diogo, J.; et al. In Vitro Activity of Ceftolozane-Tazobactam against Enterobacterales and Pseudomonas Aeruginosa Causing Urinary, Intra-Abdominal and Lower Respiratory Tract Infections in Intensive Care Units in Portugal: The STEP Multicenter Study. Int. J. Antimicrob. Agents 2020, 55, 105887. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Golden, A.R.; Adam, H.J.; Baxter, M.; Walkty, A.; Lagacé-Wiens, P.; Karlowsky, J.A.; Zhanel, G.G. In Vitro Activity of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacilli Isolated from Patients in Canadian Intensive Care Units. Diagn. Microbiol. Infect. Dis. 2020, 97, 115012. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Biedenbach, D.J.; Kazmierczak, K.M.; Stone, G.G.; Sahm, D.F. Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob. Agents Chemother. 2016, 60, 2849–2857. [Google Scholar] [CrossRef]
- Isler, B.; Ezure, Y.; Romero, J.L.G.-F.; Harris, P.; Stewart, A.G.; Paterson, D.L. Is Ceftazidime/Avibactam an Option for Serious Infections Due to Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacterales?: A Systematic Review and Meta-Analysis. Antimicrob. Agents Chemother. 2020, 65, e01052-20. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.E.; Castanheira, M.; Gasink, L.; Stone, G.G.; Nichols, W.W.; Flamm, R.K.; Jones, R.N. β-Lactamase Characterization of Gram-Negative Pathogens Recovered from Patients Enrolled in the Phase 2 Trials for Ceftazidime-Avibactam: Clinical Efficacies Analyzed against Subsets of Molecularly Characterized Isolates. Antimicrob. Agents Chemother. 2015, 60, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Iovleva, A.; Kline, E.G.; Kawai, A.; McElheny, C.L.; Doi, Y. Clinical Evolution of AmpC-Mediated Ceftazidime-Avibactam and Cefiderocol Resistance in Enterobacter Cloacae Complex Following Exposure to Cefepime. Clin. Infect. Dis. 2020, 71, 2713–2716. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Rosi, E. Pharmacological Properties of Oral Antibiotics for the Treatment of Uncomplicated Urinary Tract Infections. J. Chemother. 2017, 29, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Caron, F.; Galperine, T.; Flateau, C.; Azria, R.; Bonacorsi, S.; Bruyère, F.; Cariou, G.; Clouqueur, E.; Cohen, R.; Doco-Lecompte, T.; et al. Practice Guidelines for the Management of Adult Community-Acquired Urinary Tract Infections. Med. Mal. Infect. 2018, 48, 327–358. [Google Scholar] [CrossRef]
- Rees, J.; Abrahams, M.; Doble, A.; Cooper, A.; the Prostatitis Expert Reference Group (PERG). Diagnosis and Treatment of Chronic Bacterial Prostatitis and Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Consensus Guideline. BJU Int. 2015, 116, 509–525. [Google Scholar] [CrossRef]
- Huttner, A.; Kowalczyk, A.; Turjeman, A.; Babich, T.; Brossier, C.; Eliakim-Raz, N.; Kosiek, K.; Martinez de Tejada, B.; Roux, X.; Shiber, S.; et al. Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women: A Randomized Clinical Trial. JAMA 2018, 319, 1781–1789. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. EUCAST Guidance on Use of Fosfomycin i.v. Breakpoints. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/Use_of_fosfomycin_iv_breakpoints_General_advice_20240528.pdf (accessed on 12 July 2024).
- Heil, E.L.; Bork, J.T.; Abbo, L.M.; Barlam, T.F.; Cosgrove, S.E.; Davis, A.; Ha, D.R.; Jenkins, T.C.; Kaye, K.S.; Lewis, J.S.; et al. Optimizing the Management of Uncomplicated Gram-Negative Bloodstream Infections: Consensus Guidance Using a Modified Delphi Process. Open Forum Infect. Dis. 2021, 8, ofab434. [Google Scholar] [CrossRef]
- Tingsgård, S.; Bastrup Israelsen, S.; Jørgensen, H.L.; Østergaard, C.; Benfield, T. Early Switch From Intravenous to Oral Antibiotics for Patients with Uncomplicated Gram-Negative Bacteremia. JAMA Netw. Open 2024, 7, e2352314. [Google Scholar] [CrossRef]
- Engers, D.W.; Tamma, P.D.; Fiawoo, S.; Fong, K.; Jariwala, R.; Jenkins, T.C.; Kendall, R.E.; Lee, J.H.; McCreary, E.K.; Patel, P.K.; et al. Transition to Oral Antibiotic Therapy for Hospitalized Adults with Gram-Negative Bloodstream Infections. JAMA Netw. Open 2024, 7, e2349864. [Google Scholar] [CrossRef] [PubMed]
- Alzaidi, S.; Veillette, J.J.; May, S.S.; Olson, J.; Jackson, K.; Waters, C.D.; Butler, A.M.; Hutton, M.A.; Buckel, W.R.; Webb, B.J. Oral β-Lactams, Fluoroquinolones, or Trimethoprim-Sulfamethoxazole for Definitive Treatment of Uncomplicated Escherichia Coli or Klebsiella Species Bacteremia From a Urinary Tract Source. Open Forum Infect. Dis. 2024, 11, ofad657. [Google Scholar] [CrossRef] [PubMed]
- Kaasch, A.J.; López-Cortés, L.E.; Rodríguez-Baño, J.; Cisneros, J.M.; Dolores Navarro, M.; Fätkenheuer, G.; Jung, N.; Rieg, S.; Lepeule, R.; Coutte, L.; et al. Efficacy and Safety of an Early Oral Switch in Low-Risk Staphylococcus Aureus Bloodstream Infection (SABATO): An International, Open-Label, Parallel-Group, Randomised, Controlled, Non-Inferiority Trial. Lancet Infect. Dis. 2024, 24, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Conley, A.T.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Amoah, J.; Avdic, E.; Tolomeo, P.; Wise, J.; Subudhi, S.; et al. Association of 30-Day Mortality with Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized with Enterobacteriaceae Bacteremia. JAMA Intern. Med. 2019, 179, 316–323. [Google Scholar] [CrossRef]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Punjabi, C.; Tien, V.; Meng, L.; Deresinski, S.; Holubar, M. Oral Fluoroquinolone or Trimethoprim-Sulfamethoxazole vs. ß-Lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2019, 6, ofz364. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.E.; Kenney, R.M.; Tibbetts, R.J.; Shallal, A.B.; Veve, M.P. Leveraging Stewardship to Promote Ceftriaxone Use in Severe Infections with Low- and No-Risk AmpC Enterobacterales. Antimicrob. Agents Chemother. 2023, 67, e0082623. [Google Scholar] [CrossRef]
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; DiBernardo, L.; Durante-Mangoni, E.; Duval, X.; et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the Management of Endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Lorenz, A.; Sobhanie, M.M.E.; Orzel, L.; Coe, K.; Wardlow, L. Clinical Outcomes of Combination versus Monotherapy for Gram Negative Non-HACEK Infective Endocarditis. Diagn. Microbiol. Infect. Dis. 2021, 101, 115504. [Google Scholar] [CrossRef] [PubMed]
- Veve, M.P.; McCurry, E.D.; Cooksey, G.E.; Shorman, M.A. Epidemiology and Outcomes of Non-HACEK Infective Endocarditis in the Southeast United States. PLoS ONE 2020, 15, e0230199. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Wild-Type Expected Phenotype | Expected Phenotype in Cases of AmpC Derepression | Expected Phenotype in Cases of ESBLs |
---|---|---|---|
aminopenicillins (ampicillin, amoxicillin) | R | R | R |
Amoxicillin/clavulanic acid | R | R | S/R 3 |
ticarcillin | S | R | R |
piperacillin | S | R | R |
piperacillin/tazobactam | S | R | S/R 3 |
first-generation cephalosporins | R | R | R |
cephamycins (2ndG cef) | R | R | S |
third-generation cephalosporins | S | R | R |
fourth-generation cephalosporins (cefepime) | S | S 1 | S/R 3 |
ceftaroline and ceftobiprole | S | R | R |
ceftolozane/tazobactam | S | S/R | S/R 4 |
aztreonam | S | R | S/R 3 |
carbapenems | S | S 2 | S 2 |
ceftazidime/avibactam, imipenem/cilastatin/relebactam, meropenem/vaborbactam, cefiderocol | S | S | S |
Ability to Induce AmpC Gene Derepression and Subsequent AmpC Production | |||
---|---|---|---|
Low | High | ||
Susceptibility to AmpC-mediated hydrolysis | low | cefepime | carbapenems |
high | third-generation cephalosporins, piperacillin/tazobactam, aztreonam | aminopenicillins (ampicillin, amoxicillin), amoxicillin/clavulanic acid, first-generation cephalosporins, cephamycins (cefoxitin) |
Antibiotic | Substrate for AmpC-Mediated Hydrolysis | Induction of AmpC Derepression | Clinical Data | Clinical Use | Antibiotic Stewardship Additional Considerations |
---|---|---|---|---|---|
Third-generation cephalosporins | Yes | Strong inducers | Observational studies | Discouraged, except for low-risk UTIs | Good choice in cases of AmpC-producing Enterobacterales with low risk of derepression 1, except for very severe infections |
Cefepime | No 2 | Weak inducer | Observational studies | Drug of choice. Non-inferiority to carbapenems has not been demonstrated in RCTs | Preferable to carbapenems from a stewardship perspective |
Piperacilin/tazobactam | Yes | Weak inducer | One pilot RCT + observational studies | More commonly considered as a second choice compared to cefepime and carbapenems. Probably avoided for more severe and high-inoculum infections | Probably comparable to cefepime in terms of selective pressure (ecological impact) |
Ceftolozane/tazobactam | Insufficient evidence | Insufficient evidence | Insufficient evidence (mainly in vitro data) | Not indicated except when treating polymicrobial infections, including P. aeruginosa | The exact extent of its ecological impact is unknown but should theoretically be less relevant than for carbapenems. Use can be limited also by high cost |
Ertapenem | No 3 | Strong inducer (? few data) | Few observational studies | Reasonable alternative to meropenem and imipenem/cilastatin | Cefepime is preferable from a stewardship perspective |
Imipenem/cilastatin and meropenem | No | Strong inducer | Observational studies, one pilot RCT. Usually used as comparators for other investigational drugs | Drug of choice | |
New BL-BLICs and cefiderocol | No 4 | Insufficient evidence | Few observational studies | Drugs of choice for carbapenem-resistant strains | To be reserved for carbapenem-resistant strains |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebano, G.; Zaghi, I.; Cricca, M.; Cristini, F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. Pharmacy 2024, 12, 142. https://doi.org/10.3390/pharmacy12050142
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. Pharmacy. 2024; 12(5):142. https://doi.org/10.3390/pharmacy12050142
Chicago/Turabian StyleTebano, Gianpiero, Irene Zaghi, Monica Cricca, and Francesco Cristini. 2024. "Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales" Pharmacy 12, no. 5: 142. https://doi.org/10.3390/pharmacy12050142
APA StyleTebano, G., Zaghi, I., Cricca, M., & Cristini, F. (2024). Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. Pharmacy, 12(5), 142. https://doi.org/10.3390/pharmacy12050142