Vancomycin AUC-Based Dosing Practices in a Non-Teaching Community Hospital and Associated Outcomes: A One-Year Survey of Uniform Targets for Infections with or without MRSA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Patients
3.2. Primary Outcomes
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Gram Negative Organism (N = 38) | No. of Patients |
---|---|
Pseudomonas spp. | 14 |
Proteus spp. | 13 |
Klebsiella spp. | 8 |
Escherichia coli | 8 |
Other Gram-negative organisms | 5 |
Enterobacter spp. | 5 |
Morganella spp. | 4 |
Citrobacter spp. | 3 |
Acinetobacter spp. | 3 |
Providencia spp. | 2 |
Additional IV Antibiotics Used (N = 159) | |
Cefepime | 28 |
Piperacillin-tazobactam | 26 |
Ceftriaxone | 17 |
Other antibiotics | 17 |
Meropenem | 11 |
Aztreonam | 3 |
Levofloxacin | 3 |
Ampicillin-Sulbactam | 2 |
Gentamicin | 1 |
Colistin | 1 |
Patient Characteristics | MRSA N = 28 No. (%) or Mean ± SD | Non-MRSA N = 85 No. (%) or Mean ± SD | Significance (P) |
---|---|---|---|
Female gender | 12 (42.9) | 37 (43.5) | 0.95 |
Age (years) | 67.8 ± 14.2 | 68.8 ± 17.8 | 0.78 |
Weight (kg) | 84.7 ± 26.1 | 78.4 ± 24.2 | 0.23 |
BMI (kg/m2) | 29.1 ± 8.4 | 26.9 ± 7.7 | 0.21 |
Baseline WBC (103/µL) | 12.4 ± 6.5 | 11.6 ± 6.6 | 0.56 |
Baseline temperature (degrees celsius) | 37.1 ± 1.1 | 37.2 ± 0.7 | 0.40 |
Baseline CrCL (mL/min) | 81.1 ± 69.8 | 76.3 ± 39.6 | 0.65 |
Average AUC (mg*h/L) | 526.5 ± 82.3 | 504.7 ± 30.7 | 0.18 |
Vancomycin duration (days) | 11.5 ± 7.0 | 7.9 ± 3.9 | 0.01 |
Vancomycin dose (mg/kg/day) | 19.4 ± 6.9 | 22.2 ± 8.4 | 0.12 |
Time to source control (days) | 3.4 ± 4.2 | 2.3 ± 2.4 | 0.24 |
Medical conditions | |||
Hypertension | 15 (53.6) | 48 (56.5) | 0.79 |
Diabetes Mellitus | 15 (53.6) | 23 (27.1) | 0.01 |
Dyslipidemia | 11 (39.3) | 31 (36.5) | 0.79 |
Chronic kidney disease | 11 (39.3) | 27 (31.8) | 0.46 |
Cerebrovascular disease | 6 (21.4) | 11 (12.9) | 0.36 |
PAD/PVD | 5 (17.8) | 8 (9.4) | 0.30 |
Cardiovascular disease | 4 (14.3) | 9 (10.6) | 0.73 |
Venous thromboembolism | 4 (14.3) | 16 (18.8) | 0.78 |
COPD/Asthma | 4 (14.3) | 11 (12.9) | >0.99 |
Cancer | 2 (7.1) | 19 (22.4) | 0.07 |
HIV | 1 (3.6) | 1 (1.2) | >0.99 |
AUC after 48 h (mg*h/L) | |||
<400 | 6 (21.4) | 19 (22.4) | |
>600 | 1 (3.6) | 3 (3.5) | |
400–499 | 15 (53.6) | 46 (54.1) | |
500–600 | 6 (21.4) | 17 (20) | |
Polymicrobial with Gram-negatives | 13 (46.4) | 25 (29.4) | 0.10 |
ICU admission prior to initiation | 6 (21.4) | 9 (10.6) | 0.20 |
Sepsis diagnosis | 16 (57.1) | 48 (56.5) | 0.95 |
ID consultation | 26 (92.9) | 83 (97.6) | 0.26 |
Primary indication | |||
SSTI | 10 (35.7) | 22 (25.9) | |
Osteomyelitis | 9 (32.1) | 26 (30.6) | |
Bacteremia | 5 (17.9) | 10 (11.8) | |
Pneumonia | 3 (10.7) | 10 (11.8) | |
Endocarditis | 1 (3.6) | 3 (3.5) | |
Meningitis | 0 | 1 (1.2) | |
Necrotizing fasciitis | 0 | 1 (1.2) | |
Neutropenic fever | 0 | 2 (2.4) | |
Abdominal Infection | 0 | 3 (3.5) | |
Port infection | 0 | 1 (1.2) | |
Sepsis Empiric | 0 | 2 (2.4) | |
UTI | 0 | 4 (4.7) |
References
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of health-system pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health-Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Elbarbry, F. Vancomycin Dosing and Monitoring: Critical Evaluation of the Current Practice. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 259–268. [Google Scholar] [CrossRef]
- Abdelmessih, E.; Patel, N.; Vekaria, J.; Crovetto, B.; San Filippo, S.; Adams, C.; Brunetti, L. Vancomycin area under the curve versus trough only guided dosing and the risk of acute kidney injury: Systematic review and meta-analysis. Pharmacotherapy 2022, 42, 741–753. [Google Scholar] [CrossRef]
- Matsumoto, K.; Oda, K.; Shoji, K.; Hanai, Y.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Mayumi, T.; Ueda, T.; et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 489. [Google Scholar] [CrossRef]
- American Society of Health-System Pharmacists. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health-Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, F. Current and emerging serious gram-positive infections. Clin. Microbiol. Infect. 2005, 11, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ohl, C.; Johnson, J.; Williamson, J.; Beardsley, J.; Luther, V. Frequency of empiric antibiotic de-escalation in an acute care hospital with an established Antimicrobial Stewardship Program. BMC Infect. Dis. 2016, 16, 751. [Google Scholar] [CrossRef]
- Niederman, M.S.; Soulountsi, V. De-escalation therapy: Is it valuable for the management of ventilator-associated pneumonia? Clin. Chest Med. 2011, 32, 517–534. [Google Scholar] [CrossRef]
- Rybak, M.J.; Lomaestro, B.M.; Rotscahfer, J.C.; Moellering, R.C.; Craig, W.A.; Dalovisio, J.R.; Billeter, M.; Levine, D.P. Vancomycin therapeutic guidelines: A summary of consensus recommendations from the Infectious Diseases Society of America, the American Society of health-system pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2009, 49, 325–327. [Google Scholar] [CrossRef]
- Drennan, P.G.; Begg, E.J.; Gardiner, S.J.; Kirkpatrick, C.M.J.; Chambers, S.T. The dosing and monitoring of vancomycin: What is the best way forward? Int. J. Antimicrob. Agents 2019, 53, 401–407. [Google Scholar] [CrossRef]
- Cusumano, J.A.; Klinker, K.P.; Huttner, A.; Luther, M.K.; Roberts, J.A.; LaPlante, K.L. Towards precision medicine: Therapeutic drug monitoring-guided dosing of vancomycin and β-lactam antibiotics to maximize effectiveness and minimize toxicity. Am. J. Health Syst. Pharm. 2020, 77, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Katip, W.; Oberdorfer, P. A monocentric retrospective study of AUC/MIC ratio of vancomycin associated with clinical outcomes and nephrotoxicity in patients with Enterococcal infections. Pharmaceutics 2021, 13, 1378. [Google Scholar] [CrossRef]
- Alosaimy, S.; Murray, K.P.; Zasowski, E.J.; Morrisette, T.; Lagnf, A.M.; Lodise, T.P.; Rybak, M.J. Vancomycin area under the curve to predict timely clinical response in the treatment of methicillin-resistant Staphylococcus aureus complicated skin and soft tissue infections. Clin. Infect. Dis. 2020, 73, e4560–e4567. [Google Scholar] [CrossRef] [PubMed]
- Tochikura, N.; Matsumoto, C.; Iwabuchi, S.; Aso, H.; Fukushima, S.; Ootsuka, S.; Ooba, N.; Ishihara, M.; Nakajima, H.; Umemura, H.; et al. Pharmacokinetic/pharmacodynamic analysis of vancomycin in patients with Enterococcus faecium bacteraemia: A retrospective cohort study. Eur. J. Hosp. Pharm. 2023. [Google Scholar] [CrossRef] [PubMed]
- InsightRX Nova. InsightRX. Available online: https://www.insight-rx.com (accessed on 1 September 2023).
- BD PhoenixTM Automated Identification and Susceptibility Testing System. Available online: www.bd.com (accessed on 1 September 2023).
- Centers for Disease Control and Prevention. Emerging Infections Program, Healthcare-Associated Infections—Community Interface Surveillance Report, Invasive Staphylococcus aureus, 2020. 2022. Available online: https://www.cdc.gov/hai/eip/pdf/2020-MRSA-Report-508.pdf (accessed on 1 September 2023).
- McDanel, J.S.; Perencevich, E.N.; Diekema, D.J.; Herwaldt, L.A.; Smith, T.C.; Chrischilles, E.A.; Dawson, J.D.; Jiang, L.; Goto, M.; Schweizer, M.L.; et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Infect. Dis. 2015, 61, 361–367. [Google Scholar] [CrossRef]
- Ueda, T.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Ishikawa, K.; Yamada, K.; Tsuchida, T.; Otani, N.; Takahashi, Y.; Ishihara, M.; et al. Validation of vancomycin area under the concentration—Time curve estimation by the Bayesian approach using one-point samples for predicting clinical outcomes in patients with methicillin-resistant Staphylococcus aureus infections. Antibiotics 2022, 11, 96. [Google Scholar] [CrossRef]
- Brown, J.; Brown, K.; Forrest, A. Vancomycin AUC24/MIC ratio in patients with complicated bacteremia and infective endocarditis due to methicillin-resistant Staphylococcus aureus and its association with attributable mortality during hospitalization. Antimicrob. Agents Chemother. 2012, 56, 634–638. [Google Scholar] [CrossRef]
- Sasano, H.; Hanada, K. Assessing Clinical Outcomes of Vancomycin Treatment in Adult Patients with Vancomycin-Susceptible Enterococcus faecium Bacteremia. Antibiotics 2023, 12, 1577. [Google Scholar] [CrossRef]
- Nakakura, I.; Sakakura, K.; Imanishi, K.; Sako, R.; Yamazaki, K. Association between vancomycin pharmacokinetic/pharmacodynamic parameters, patient characteristics, and mortality in patients with bacteremia caused by vancomycin-susceptible Enterococcus faecium: A single-center retrospective study. J. Pharm. Health Care Sci. 2019, 5, 8. [Google Scholar] [CrossRef]
- Jumah, M.T.B.; Vasoo, S.; Menon, S.R.; De, P.P.; Neely, M.; Teng, C.B. Pharmacokinetic/Pharmacodynamic Determinants of Vancomycin Efficacy in Enterococcal Bacteremia. Antimicrob Agents Chemother. 2018, 62, e01602-17. [Google Scholar] [CrossRef]
- Schweizer, M.L.; Furuno, J.P.; Harris, A.D.; Johnson, J.K.; Shardell, M.D.; McGregor, J.C.; Thom, K.A.; Cosgrove, S.E.; Sakoulas, G. Comparative effectiveness of Nafcillin or CEFAZOLIN versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect. Dis. 2011, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Alsowaida, Y.S.; Benitez, G.; Bin Saleh, K.; Almangour, T.A.; Shehadeh, F.; Mylonakis, E. Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicil-lin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 375. [Google Scholar] [CrossRef]
- Blair, M.; Côté, J.-M.; Cotter, A.; Lynch, B.; Redahan, L.; Murray, P.T. Nephrotoxicity from vancomycin combined with Piperacillin-Tazobactam: A comprehensive review. Am. J. Nephrol. 2021, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Karas, C.; Manning, K.; Childress, D.T.; Covington, E.W.; Manis, M.M. Evaluating the Safety of Trough Versus Area Under the Curve (AUC)-Based Dosing Method of Vancomycin With Concomitant Piperacillin-Tazobactam. J. Pharm. Technol. 2022, 38, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Kimura, T.; Hamada, Y.; Niwa, T.; Hanai, Y.; Chuma, M.; Fujii, S.; Matsumoto, K.; Shigemi, A.; Kawamura, H.; et al. Candidates for area under the concentration-time curve (AUC)-guided dosing and risk reduction based on analyses of risk factors associated with nephrotoxicity in vancomycin-treated patients. J. Glob. Antimicrob. Resist. 2021, 27, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Sarwal, A. Evaluating the Nephrotoxicity of Area-under-the-Curve-Based Dosing of Vancomycin with Concomitant Antipseudomonal Beta-Lactam Antibiotics: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 691. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Yee, J.; Yoon, H.Y.; Han, J.M.; Gwak, H.S. Risk factors for vancomycin-associated acute kidney injury: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 3977–3989. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kawasaki, K.; Sato, Y.; Tokimatsu, I.; Itoh, H.; Hiramatsu, K.; Takeyama, M.; Kadota, J. Is peak concentration needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillinresistant Staphylococcus aureus pneumonia. Chemotherapy 2012, 58, 308–312. [Google Scholar] [CrossRef]
- Aljefri, D.M.; Avedissian, S.N.; Rhodes, N.J.; Postelnick, M.J.; Nguyen, K.; Scheetz, M.H. Vancomycin area under the curve and acute kidney injury: A meta-analysis. Clin. Infect Dis. 2019, 69, 1881–1887. [Google Scholar] [CrossRef]
- Casapao, A.M.; Lodise, T.P.; Davis, S.L.; Claeys, K.C.; Kullar, R.; Levine, D.P.; Rybak, M.J. Association between vancomycin day 1 exposure profile and outcomes among patients with methicillin-resistant Staphylococcus aureus infective endocarditis. Antimicrob. Agents Chemother. 2015, 59, 2978–2985. [Google Scholar] [CrossRef]
- Lodise, T.P.; Drusano, G.L.; Zasowski, E.; Dihmess, A.; Lazariu, V.; Cosler, L.; McNutt, L.A. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: How much is enough? Clin. Infect. Dis. 2014, 59, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, E.S.G. Epitools Epidemiological Calculators. Ausvet 2018. Available online: http://epitools.ausvet.com.au (accessed on 8 January 2024).
Patient Characteristics N = 159 | Mean ± SD or No. (%) | |
---|---|---|
Age (years) | 69.3 ± 17.1 | |
Weight (kg) | 80.8 ± 25.4 | |
BMI (kg/m2) | 27.9 ± 8.3 | |
Baseline WBC (103/µL) | 11.8 ± 6.2 | |
Baseline temperature (degrees celsius) | 37.2 ± 0.8 | |
Baseline CrCl (mL/min) | 75.7 ± 47.0 | |
Male Female | 84 (52.8) 75 (47.2) | |
Medical conditions | Hypertension | 95 (59.7) |
Dyslipidemia | 63 (39.6) | |
Chronic kidney disease | 56 (35.2) | |
Diabetes Mellitus | 50 (31.4) | |
Cancer | 27 (17.0) | |
Venous thromboembolism | 25 (15.7) | |
Cerebrovascular disease | 25 (15.7) | |
Cardiovascular disease | 24 (15.1) | |
PAD/PVD | 23 (14.5) | |
COPD/Asthma | 22 (13.8) | |
HIV | 2 (1.3) | |
Primary indication | SSTI | 51 (32.1) |
Osteomyelitis | 41 (25.8) | |
Pneumonia | 30 (18.9) | |
Bacteremia | 15 (9.4) | |
Abdominal infection | 6 (3.8) | |
Endocarditis | 4 (2.5) | |
UTI | 4 (2.5) | |
Meningitis | 2 (1.3) | |
Neutropenic fever | 2 (1.3) | |
Sepsis Empiric | 2 (1.3) | |
Port infection | 1 (0.6) | |
Necrotizing fasciitis | 1 (0.6) | |
ICU admission prior to the start of vancomycin | 17 (10.7) | |
Sepsis diagnosis | 89 (56.0) | |
ID consultation | 147 (92.5) |
Organism (s) | Frequency N = 159 | MIC (% of Isolates) µg/mL |
---|---|---|
MRSA | 17.6% | 0.5 (11.1) 1.0 (88.9) |
Enterococcus spp. | 17.0% | 0.5 (11.1) 1.0 (74.1) 2.0 (14.8) |
MRSE | 13.2% | 0.5 (25) 1.0 (65) 2.0 (10) |
Coagulase-negative Staphylococcus spp. (undifferentiated) | 12.6% | 0.5 (23.5) 1.0 (47.1) 2.0 (29.4) |
MSSA | 8.2% | 1.0 (100) |
Streptococcus spp. | 7.5% | 0.25 (33.3) 0.5 (33.3) 1.0 (33.3) |
Other Gram-positive organisms | 6.9% | 1.0 (60) 2.0 (40) |
MSSE | 2.5% | 0.5 (25) 1.0 (50) 2.0 (25) |
Outcome N = 159 | Mean ± SD or No. (%) | |
---|---|---|
Vancomycin duration of therapy (days) | 8.3 ± 4.5 | |
Average total daily dose (mg/kg/day) | 21.3 ± 8.5 | |
Average AUC (mg*h/L) | 508.2 ± 43.8 | |
AUC achieved after 48 h (mg*h/L) | 400–500 | 85 (53.5) |
<400 | 35 (22.0) | |
500–600 | 34 (21.4) | |
>600 | 5 (3.1) | |
30 day all-cause mortality | 18 (11.3) | |
Early response (72 h) | 80 (50.3) | |
Absence of clinical failure on day seven | 142 (89.3) | |
Acute kidney injury | 6 (3.8) | |
Hospital length of stay (days) | 15.6 ± 14.8 |
Outcome | Confirmed MRSA (n = 28) vs. Non-MRSA (n = 85) OR (95% CI) | Serious MRSA (n = 18) vs. non-MRSA or Non-Serious MRSA (n = 117) OR (95% CI) | AUC 400–499 (n = 66) vs. AUC 500–600 (n = 92) OR (95% CI) |
---|---|---|---|
Early response rate (72 h) | 71.4% vs. 48.2% OR 2.68 (1.06–6.76) p 0.04 aOR 3.36 (1.21–9.33) p 0.02 | 72.2% vs. 49.6% OR 2.64 (0.89–7.89) p 0.08 | 45.5% vs. 54.3% OR 1.43 (0.76–2.69) p 0.27 |
Absence of clinical failure on day seven | 96.4% vs. 85.9% OR 4.44 (0.55–35.78) p 0.16 | 94.4% vs. 88.9% OR 2.12 (0.26–17.31) p 0.48 | 87.9% vs. 90.2% OR 1.27 (0.46–3.49) p 0.64 |
30-day mortality rate | 7.1% vs. 12.9% OR 0.52 (0.11–2.49) p 0.41 | 11.1% vs. 9.4% OR 1.20 (0.24–5.94) p 0.82 | 15.2% vs. 8.7% OR 0.53(0.20–1.43) p 0.21 |
Incidence of new AKI | 3.6% vs. 3.5% OR 1.01 (0.10 to 10.14) p 0.99 | 5.6% vs. 2.6% OR 2.23(0.22–22.74) p 0.50 | 4.5% vs. 3.3% OR 0.71 (0.14–3.62) p 0.68 |
Duration of hospital stay (days) | 15.29 vs. 16.35 MD −1.07 (−7.74 to 5.61) p 0.75 | 16.39 vs. 15.35 MD 1.04 (−6.23–8.31) p 0.78 | 16.01 vs. 15.15 MD 0.86 (−3.89–5.61) p 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, I. Vancomycin AUC-Based Dosing Practices in a Non-Teaching Community Hospital and Associated Outcomes: A One-Year Survey of Uniform Targets for Infections with or without MRSA. Pharmacy 2024, 12, 15. https://doi.org/10.3390/pharmacy12010015
Islam I. Vancomycin AUC-Based Dosing Practices in a Non-Teaching Community Hospital and Associated Outcomes: A One-Year Survey of Uniform Targets for Infections with or without MRSA. Pharmacy. 2024; 12(1):15. https://doi.org/10.3390/pharmacy12010015
Chicago/Turabian StyleIslam, Iftekharul. 2024. "Vancomycin AUC-Based Dosing Practices in a Non-Teaching Community Hospital and Associated Outcomes: A One-Year Survey of Uniform Targets for Infections with or without MRSA" Pharmacy 12, no. 1: 15. https://doi.org/10.3390/pharmacy12010015
APA StyleIslam, I. (2024). Vancomycin AUC-Based Dosing Practices in a Non-Teaching Community Hospital and Associated Outcomes: A One-Year Survey of Uniform Targets for Infections with or without MRSA. Pharmacy, 12(1), 15. https://doi.org/10.3390/pharmacy12010015