Explaining Correlates of Cervical Cancer Screening among Minority Women in the United States
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Sampling
2.2. Participants’ Selection Criteria
2.3. Ethical Considerations
2.4. Data Integrity
2.5. Survey Tool
2.6. Minimum Sample Size Calculation
2.7. Data Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Buskwofie, A.; David-West, G.; Clare, C.A. A Review of Cervical Cancer: Incidence and Disparities. J. Natl. Med. Assoc. 2020, 112, 229–232. [Google Scholar] [CrossRef]
- Yu, L.; Sabatino, S.A.; White, M.C. Rural-Urban and Racial/Ethnic Disparities in Invasive Cervical Cancer Incidence in the United States, 2010–2014. Prev. Chronic Dis. 2019, 16, E70. [Google Scholar] [CrossRef] [Green Version]
- Pierce Campbell, C.M.; Menezes, L.J.; Paskett, E.D.; Giuliano, A.R. Prevention of Invasive Cervical Cancer in the United States: Past, Present, and Future. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical Cancer Screening for Individuals at Average Risk: 2020 Guideline Update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Special Feature on Racial and Ethnic Health Disparities. In Health United States; U.S. Government Printing Office: Hyattsville, MD, USA, 2015. [Google Scholar]
- Akinlotan, M.; Bolin, J.N.; Helduser, J.; Ojinnaka, C.; Lichorad, A.; McClellan, D. Cervical Cancer Screening Barriers and Risk Factor Knowledge Among Uninsured Women. J. Community Health 2017, 42, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.C.; Chou, C.F.; Johnson, P.J.; Ward, A. Persistent Disparities in Pap Test Use: Assessments and Predictions for Asian Women in the U.S., 1982–2010. J. Immigr. Minority Health 2010, 12, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunwale, A.N.; Sangi-Haghpeykar, H.; Montealegre, J.; Cui, Y.; Jibaja-Weiss, M.; Anderson, M.L. Non-Utilization of the Pap Test Among Women with Frequent Health System Contact. J. Immigr. Minority Health 2016, 18, 1404–1412. [Google Scholar] [CrossRef]
- Beavis, A.L.; Gravitt, P.E.; Rositch, A.F. Hysterectomy-Corrected Cervical Cancer Mortality Rates Reveal a Larger Racial Disparity in the United States. Cancer 2017, 123, 1044–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarinci, I.C.; Garcia, F.A.R.; Kobetz, E.; Partridge, E.E.; Brandt, H.M.; Bell, M.C.; Dignan, M.; Ma, G.X.; Daye, J.L.; Castle, P.E. Cervical Cancer Prevention: New Tools and Old Barriers. Cancer 2010, 116, 2531–2542. [Google Scholar] [CrossRef] [Green Version]
- Orji, A.F.; Yamashita, T. Racial Disparities in Routine Health Checkup and Adherence to Cancer Screening Guidelines among Women in the United States of America. Cancer Causes Control 2021, 32, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Nardi, C.; Sandhu, P.; Selix, N. Cervical Cancer Screening Among Minorities in the United States. J. Nurse Pract. 2016, 12, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, M.K.; Campbell, S.; Ursin, G.; Tropé, A.; Nygård, M. Barriers to Cervical Cancer Screening Faced by Immigrants: A Registry-Based Study of 1.4 Million Women in Norway. Eur. J. Public Health 2017, 27, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Brzoska, P.; Aksakal, T.; Yilmaz-Aslan, Y. Utilization of Cervical Cancer Screening among Migrants and Non-Migrants in Germany: Results from a Large-Scale Population Survey. BMC Public Health 2020, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Aminisani, N.; Armstrong, B.K.; Canfell, K. Cervical Cancer Screening in Middle Eastern and Asian Migrants to Australia: A Record Linkage Study. Cancer Epidemiol. 2012, 36, e394–e400. [Google Scholar] [CrossRef] [PubMed]
- Dalla, V.; Panagiotopoulou, E.K.; Deltsidou, A.; Kalogeropoulou, M.; Kostagiolas, P.; Niakas, D.; Labiris, G. Level of Awareness Regarding Cervical Cancer Among Female Syrian Refugees in Greece. J. Cancer Educ. 2020. [Google Scholar] [CrossRef]
- Ogunsiji, O.; Wilkes, L.; Peters, K.; Jackson, D. Knowledge, Attitudes and Usage of Cancer Screening among West African Migrant Women. J. Clin. Nurs. 2013, 22, 1026–1033. [Google Scholar] [CrossRef]
- Holt, H.K.; Zhang, X.; Hu, S.Y.; Zhao, F.H.; Smith, J.S.; Qiao, Y.L. Inequalities in Cervical Cancer Screening Uptake Between Chinese Migrant Women and Local Women: A Cross-Sectional Study. Cancer Control 2021, 28. [Google Scholar] [CrossRef]
- Mojica, C.M.; Morales-Campos, D.Y.; Carmona, C.M.; Ouyang, Y.; Liang, Y. Breast, Cervical, and Colorectal Cancer Education and Navigation: Results of a Community Health Worker Intervention. Health Promot. Pract. 2016, 17, 353–363. [Google Scholar] [CrossRef]
- Kessler, T.A. Cervical Cancer: Prevention and Early Detection. Semin. Oncol. Nurs. 2017, 33, 172–183. [Google Scholar] [CrossRef]
- Ramondetta, L.M.; Meyer, L.A.; Schmeler, K.M.; Daheri, M.E.; Gallegos, J.; Scheurer, M.; Montealegre, J.R.; Milbourne, A.; Anderson, M.L.; Sun, C.C. Avoidable Tragedies: Disparities in Healthcare Access among Medically Underserved Women Diagnosed with Cervical Cancer. Gynecol. Oncol. 2015, 139, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.; Saraiya, M.; Thompson, T.; Dey, A.; Richardson, L. Cervical Cancer Screening among Foreign-Born Women by Birthplace and Duration in the United States. J. Women’s Health 2007, 16, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Marlow, L.A.V.; Waller, J.; Wardle, J. Barriers to Cervical Cancer Screening among Ethnic Minority Women: A Qualitative Study. J. Fam. Plan. Reprod. Health Care 2015, 41, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, B.; Alnaji, N.; Watanabe-Galloway, S.; Leypoldt, M. Cervical Cancer Attitudes and Knowledge in Somali Refugees in Nebraska. Pedagog. Health Promot. 2017, 3, 81S–87S. [Google Scholar] [CrossRef]
- Marques, P.; Nunes, M.; Antunes, M.D.L.; Heleno, B.; Dias, S. Factors Associated with Cervical Cancer Screening Participation among Migrant Women in Europe: A Scoping Review. Int. J. Equity Health 2020, 19, 1–15. [Google Scholar] [CrossRef]
- Inturrisi, F.; Aitken, C.A.; Melchers, W.J.G.; van den Brule, A.J.C.; Molijn, A.; Hinrichs, J.W.J.; Niesters, H.G.M.; Siebers, A.G.; Schuurman, R.; Heideman, D.A.M.; et al. Clinical Performance of High-Risk HPV Testing on Self-Samples versus Clinician Samples in Routine Primary HPV Screening in the Netherlands: An Observational Study. Lancet Reg. Health—Eur. 2021, 11, 100235. [Google Scholar] [CrossRef]
- Enerly, E.; Bonde, J.; Schee, K.; Pedersen, H.; Lönnberg, S.; Nygård, M. Self-Sampling for Human Papillomavirus Testing among Non-Attenders Increases Attendance to the Norwegian Cervical Cancer Screening Programme. PLoS ONE 2016, 11, e0151978. [Google Scholar] [CrossRef]
- Acera, A.; Manresa, J.M.; Rodriguez, D.; Rodriguez, A.; Bonet, J.M.; Trapero-Bertran, M.; Hidalgo, P.; Sànchez, N.; de Sanjosé, S. Increasing Cervical Cancer Screening Coverage: A Randomised, Community-Based Clinical Trial. PLoS ONE 2017, 12, e0170371. [Google Scholar] [CrossRef]
- Aranda Flores, C.E.; Gomez Gutierrez, G.; Ortiz Leon, J.M.; Cruz Rodriguez, D.; Sørbye, S.W. Self-Collected versus Clinician-Collected Cervical Samples for the Detection of HPV Infections by 14-Type DNA and 7-Type MRNA Tests. BMC Infect. Dis. 2021, 21, 504. [Google Scholar] [CrossRef]
- Byrd, T.L.; Wilson, K.M.; Smith, J.L.; Coronado, G.; Vernon, S.W.; Fernandez-Esquer, M.E.; Thompson, B.; Ortiz, M.; Lairson, D.; Fernandez, M.E. AMIGAS: A Multicity, Multicomponent Cervical Cancer Prevention Trial among Mexican American Women. Cancer 2013, 119, 1365–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, V.M.; Hislop, T.G.; Jackson, J.C.; Tu, S.P.; Yasui, Y.; Schwartz, S.M.; Teh, C.; Kuniyuki, A.; Acorda, E.; Marchand, A.; et al. A Randomized Controlled Trial of Interventions to Promote Cervical Cancer Screening among Chinese Women in North America. J. Natl. Cancer Inst. 2002, 94, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Amuta-Jimenez, A.O.; Smith, G.P.A.; Brown, K.K. Patterns and Correlates of Cervical Cancer Prevention Among Black Immigrant and African American Women in the USA: The Role of Ethnicity and Culture. J. Cancer Educ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Brevik, T.B.; Laake, P.; Bjørkly, S. Effect of Culturally Tailored Education on Attendance at Mammography and the Papanicolaou Test. Health Serv. Res. 2020, 55, 457–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandorf, L.; Bursac, Z.; Pulley, L.; Trevino, M.; Castillo, A.; Erwin, D.O. Breast and Cervical Cancer Screening among Latinas Attending Culturally Specific Educational Programs. Prog. Community Health Partnersh. Res. Educ. Action 2008, 2, 195–204. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Bastani, R.; Vida, P.; Warda, U.S. Results of a Randomized Trial to Increase Breast and Cervical Cancer Screening among Filipino American Women. Prev. Med. 2003, 37, 102–109. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Halbert, C.H.; Bixby, R.; Pimentel, S.; Shea, J.A. Community Health Worker Intervention to Decrease Cervical Cancer Disparities in Hispanic Women. J. Gen. Intern. Med. 2010, 25, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Schuchard, H.; Burston, B.; Yamashita, T.; Albert, S. Interventions to Reduce Healthcare Disparities in Cancer Screening Among Minority Adults: A Systematic Review. J. Racial Ethn. Health Disparities 2021, 8, 107–126. [Google Scholar] [CrossRef]
- Mosavel, M.; Genderson, M.W. Daughter-Initiated Cancer Screening Appeals to Mothers. J. Cancer Educ. 2016, 31, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.E.; Gonzales, A.; Tortolero-Luna, G.; Williams, J.; Saavedra-Embesi, M.; Chan, W.; Vernon, S.W. Effectiveness of Cultivando La Salud: A Breast and Cervical Cancer Screening Promotion Program for Low-Income Hispanic Women. Am. J. Public Health 2009, 99, 936–943. [Google Scholar] [CrossRef]
- Nuño, T.; Martinez, M.E.; Harris, R.; García, F. A Promotora-Administered Group Education Intervention to Promote Breast and Cervical Cancer Screening in a Rural Community along the U.S.-Mexico Border: A Randomized Controlled Trial. Cancer Causes Control 2011, 22, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jain, M.; Nahar, V.K.; Sharma, M. Predictors of Behaviour Change for Unhealthy Sleep Patterns among Indian Dental Students. Int. J. Adolesc. Med. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Penny, K.; Sharma, M.; Flischel, A.E.; Brodell, R.T.; Nahar, V.K. Atopic Dermatitis: Preventing and Managing the Itch That Rashes, and a Case for the Multi-Theory Model (MTM) for Health Behavior Change for Educational Interventions. SKIN J. Cutan. Med. 2021, 5, 462–473. [Google Scholar] [CrossRef]
- Sharma, M.; Dai, C.-L.; Batra, K.; Chen, C.-C.; Pharr, J.R.; Coughenour, C.; Awan, A.; Catalano, H. Using the Multi-Theory Model (MTM) of Health Behavior Change to Explain the Correlates of Mammography Screening among Asian American Women. Pharmacy 2021, 9, 126. [Google Scholar] [CrossRef]
- Sharma, M.; Asare, M.; Largo-Wight, E.; Merten, J.; Binder, M.; Lakhan, R.; Batra, K. Testing Multi-Theory Model (Mtm) in Explaining Sunscreen Use among Florida Residents: An Integrative Approach for Sun Protection. Healthcare 2021, 9, 1343. [Google Scholar] [CrossRef]
- Sharma, M.; Batra, K.; Batra, R. A Theory-Based Analysis of Covid-19 Vaccine Hesitancy among African Americans in the United States: A Recent Evidence. Healthcare 2021, 9, 1273. [Google Scholar] [CrossRef]
- Asare, M.; Agyei-Baffour, P.; Lanning, B.A.; Owusu, A.B.; Commeh, M.E.; Boozer, K.; Koranteng, A.; Spies, L.A.; Montealegre, J.R.; Paskett, E.D. Multi-Theory Model and Predictors of Likelihood of Accepting the Series of HPV Vaccination: A Cross-Sectional Study among Ghanaian Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 571. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Petosa, R.L. Measurement and Evaluation for Health Educators; Jones & Bartlett Learning: Burlington, MA, USA, 2014. [Google Scholar]
Variable | Categories | Participants Who Had Pap Smear 252, 69.2% | Participants Who Had Not Had Pap Smear 112, 30.8% | p-Value |
---|---|---|---|---|
Was the Pap smear normal | Yes | 234 (93.0) | Not applicable | - |
No | 18 (7.0) | Not applicable | - | |
Had hysterectomy | Yes | 44 (17.5) | 26 (23.2) | 0.2 |
No | 208 (82.5) | 86 (76.8) | ||
Age (M ± SD) | - | 44.79 ± 13.3 | 44.1 ± 14.6 | 0.6 |
Hispanic or Latina | Yes | 113 (44.8) | 49 (43.8) | 0.8 |
No | 139 (55.2) | 63 (56.3) | ||
Religion | Christianity | 178 (70.6) | 70 (62.5) | 0.1 |
Non-Christianity | 74 (29.4) | 42 (37.5) | ||
Marital status | Married | 105 (41.7) | 34 (30.4) | 0.2 |
Never married | 68 (27.0) | 38 (33.9) | ||
Divorced/Separated | 41 (16.3) | 24 (21.4) | ||
Other | 38 (15.1) | 16 (14.3) | ||
Ethnicity | African American | 93 (36.9) | 38 (33.9) | 0.2 |
Hispanic–White | 62 (24.6) | 28 (25.0) | ||
Asian | 44 (17.5) | 12 (10.7) | ||
Others including multiethnic origin | 53 (21.0) | 34 (30.4) | ||
Comorbidities | Psychological | 94 (37.3) | 36 (32.1) | 0.3 |
Non-psychological | 158 (62.7) | 76 (67.9) | ||
Duration of U.S. residency (M ± SD) | - | 39.7 ± 16.3 | 39.3 ± 16.5 | 0.8 |
Residence | Rural | 49 (19.4) | 15 (13.4) | 0.2 |
Suburban | 105 (41.7) | 44 (39.3) | ||
Urban | 98 (38.9) | 53 (47.9) | ||
Encouraged Pap test by family/friends | Yes | 107 (42.5) | 43 (38.4) | 0.5 |
No | 145 (57.5) | 69 (61.6) |
Variable | Categories | Participants Who Had Pap Smear | Participants Who Had Not Had Pap Smear | p-Value |
---|---|---|---|---|
Education | Less than high school diploma | 2 (0.8) | 6 (5.4) | <0.001 * |
High school graduate | 49 (19.4) | 24 (21.4) | ||
Some college but no degree | 64 (25.4) | 43 (38.4) | ||
Associate/Bachelor | 99 (39.3) | 31 (27.7) | ||
Graduate’s degree | 38 (15.1) | 8 (7.1) | ||
Healthcare insurance | Yes | 239 (94.8) | 80 (71.4) | <0.001 * |
No | 13 (5.2) | 32 (28.6) | ||
Employed | Yes | 154 (61.1) | 45 (40.2) | <0.001 * |
No | 98 (38.9) | 67 (59.8) | ||
Hours worked/week | - | 35.7 ± 10.5 | Not applicable | - |
Income | <$25,000 | 50 (19.8) | 31 (27.7) | 0..004 * |
$25,000–$50,000 | 85 (33.7) | 41 (36.6) | ||
$50,001–$75,000 | 54 (21.4) | 16 (14.3) | ||
$75,001–$100,000 | 33 (13.1) | 8 (7.1) | ||
$100,001–$125,000 | 10 (4.0) | 1 (0.9) | ||
$125,001–$150,000 | 6 (2.4) | 3 (2.7) | ||
>$150,001 | 11 (4.4) | 3 (2.7) | ||
Visited healthcare provider | Yes | 210 (83.3) | 63 (56.3) | 0.2 |
No | 42 (16.7) | 49 (43.8) | ||
Recommended Pap test by healthcare providers | Yes | 147 (58.3) | 35 (31.3) | <0.001 * |
No | 105 (41.7) | 77 (68.8) |
MTM Construct | Had Pap Smear Test | p-Value | |
---|---|---|---|
Yes (n = 252) | No (n = 112) | ||
Overall initiation score | 3.02 ± 0.99 | 1.69 ± 1.41 | <0.001 * |
Subscales | |||
Perceived advantages | 15.62 ± 3.84 | 13.01 ± 5.65 | <0.001 * |
Perceived disadvantages | 10.36 ± 4.55 | 10.99 ± 5.07 | 0.3 |
Participatory dialogue | 5.55 ± 1.12 | 2.29 ± 146 | <0.001 * |
Behavioral confidence | 14.01 ± 4.64 | 9.35 ± 5.53 | <0.001 * |
Changes in the physical environment | 6.16 ± 1.85 | 4.59 ± 2.65 | <0.001 * |
Overall sustenance | 2.98 ± 1.06 | 1.50 ± 1.34 | <0.001 * |
Subscales | |||
Emotional transformation | 9.03 ± 2.85 | 5.31 ± 3.95 | <0.001 * |
Practice for change | 8.68 ± 2.71 | 5.27 ± 4.02 | <0.001 * |
Changes in social environment | 13.2 ± 4.65 | 8.18 ± 5.56 | <0.001 * |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Advantages | - | 0.26 ** | 0.58 ** | 0.50 ** | 0.47 ** | 0.46 ** | 0.49 ** |
2. Disadvantages | 0.26 ** | 1 | 0.04 | 0.05 | −0.03 | −0.06 | −0.03 |
3. Behavioral confidence | 0.58 ** | 0.04 | 1 | 0.75 ** | 0.81 ** | 0.78 ** | 0.72 ** |
4. Changes in the physical environment | 0.50 ** | 0.05 | 0.75 ** | 1 | 0.73 ** | 0.73 ** | 0.64 ** |
5. Emotional transformation | 0.47 ** | −0.03 | 0.81 ** | 0.73 ** | 1 | 0.87 ** | 0.77 ** |
6. Practice for change | 0.46 ** | −0.07 | 0.79 ** | 0.73 ** | 0.87 ** | 1 | 0.82 ** |
7. Changes in social environment | 0.49 ** | −0.03 | 0.72 ** | 0.64 ** | 0.78 ** | 0.82 ** | 1 |
Cronbach’s alpha values | 0.85 | 0.81 | 0.90 | 0.86 | 0.94 | 0.92 | 0.86 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
B | β | B | β | B | β | B | β | |
INITIATION MODEL | ||||||||
Constant | 3.292 ** | - | 2.766 ** | - | 0.878 ** | - | 0.673 * | |
Socio-economic factors | ||||||||
Health insurance (ref: yes) | −0.899 ** | −0.229 | −0.696 ** | −0.177 | −0.275 | −0.070 | −0.276 | −0.070 |
Employed (ref: yes) | −0.151 | −0.058 | −0.160 | −0.062 | −0.158 | −0.061 | −0.153 | −0.059 |
Encouraged by HCW (ref: yes) | −0.313 | −0.121 | −0.211 | −0.081 | −0.132 | −0.051 | −0.113 | −0.044 |
Income (ref: >$150,000) | ||||||||
<$25,000 | −0.263 | −0.085 | −0.135 | −0.043 | 0.089 | 0.028 | 0.095 | 0.031 |
$25,000−$50,000 | −0.498 | −0.183 | −0.401 | −0.147 | −0.158 | −0.058 | −0.150 | −0.055 |
$50,001−$75,000 | −0.197 | −0.060 | −0.098 | −0.030 | −0.074 | −0.023 | −0.038 | −0.012 |
$75,001−$100,000 | −0.429 | −0.105 | −0.139 | −0.034 | −0.034 | −0.008 | −0.055 | −0.014 |
$100,001−$125,000 | −0.697 | −0.092 | −0.560 | −0.074 | −0.293 | −0.039 | −0.327 | −0.043 |
$125,001−$150,000 | −0.207 | −0.025 | −0.170 | −0.020 | −0.204 | −0.024 | −0.219 | −0.026 |
Participatory dialogue (advantages–disadvantages) | - | - | 0.079 ** | 0.346 | 0.023 * | 0.102 | 0.021 * | 0.092 |
Behavioral confidence | - | - | - | - | 0.149 ** | 0.617 | 0.117 ** | 0.484 |
Changes in the physical environment | - | - | - | - | - | - | 0.106 * | 0.184 |
R2 | 0.096 | - | 0.209 | - | 0.498 | - | 0.512 | - |
F | 4.173 ** | - | 9.301 ** | - | 31.708 ** | - | 30.667 ** | - |
ΔR2 | 0.096 | - | 0.113 | - | 0.289 | - | 0.014 | - |
ΔF | 4.173 ** | - | 50.236 ** | - | 202.64 ** | - | 10.149 * | - |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
B | β | B | β | B | β | B | β | |
SUSTENANCE MODEL | ||||||||
Constant | 2.847 ** | - | 0.046 | - | −0.135 | - | −0.216 | - |
Socio-economic factors | ||||||||
Health insurance (ref: yes) | −1.018 ** | −0.249 | −0.458 ** | −0.112 | −0.365 * | −0.089 | −0.353 * | −0.087 |
Employed (ref: yes) | −0.055 | −0.020 | 0.053 | 0.020 | 0.056 | 0.021 | 0.070 | 0.026 |
Encouraged by HCW (ref: yes) | −0.388 * | −0.144 | −0.138 | −0.051 | −0.128 | −0.048 | −0.093 | −0.035 |
Income (ref: >$150,000) | ||||||||
<$25,000 | 0.122 | 0.038 | 0.384 * | 0.119 | 0.396 * | 0.123 | 0.390 * | 0.121 |
$25,000–$50,000 | −0.071 | −0.025 | 0.197 | 0.070 | 0.251 | 0.089 | 0.249 | 0.088 |
$50,001–$75,000 | 0.180 | 0.053 | 0.211 | 0.062 | 0.212 | 0.062 | 0.193 | 0.057 |
$75,001–$100,000 | −0.037 | −0.009 | 0.247 | 0.058 | 0.230 | 0.054 | 0.225 | 0.053 |
$100,001–$125,000 | −0.267 | −0.034 | 0.120 | 0.015 | 0.077 | 0.010 | 0.088 | 0.011 |
$125,001–$150,000 | −0.008 | −0.001 | 0.076 | 0.009 | 0.082 | 0.010 | 0.067 | 0.008 |
MTM constructs | ||||||||
Emotional transformation | - | - | 0.299 ** | 0.812 | 0.195 ** | 0.529 | 0.184 ** | 0.500 |
Practice for change | - | - | - | - | 0.126 ** | 0.333 | 0.097 ** | 0.256 |
Changes in social environment | - | - | - | - | - | - | 0.032 * | 0.129 |
R2 | 0.097 | - | 0.714 | - | 0.740 | - | 0.745 | - |
F | 4.247 ** | - | 88.00 ** | - | 90.998 ** | - | 85.338 ** | - |
ΔR2 | 0.097 | - | 0.616 | - | 0.026 | - | 0.005 | - |
ΔF | 4.247 | - | 759.83 ** | - | 35.347 ** | - | 6.744 * | - |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
B | β | B | β | B | β | B | β | |
SUSTENANCE MODEL | ||||||||
Constant | 2.973 ** | - | 0.192 | - | 0.005 | - | −0.037 | - |
Socio-economic factors | ||||||||
Health insurance (ref: yes) | −0.674 * | −0.140 | −0.423 * | −0.088 | −0.436 * | −0.090 | −0.398 * | −0.083 |
Employed (ref: yes) | 0.235 | 0.107 | 0.123 | 0.056 | 0.120 | 0.055 | 0.141 | 0.065 |
Encouraged by HCW (ref: yes) | −0.066 | −0.030 | −0.126 | −0.058 | −0.114 | −0.053 | −0.090 | −0.042 |
Income (ref: >$150,000) | ||||||||
<$25,000 | 0.060 | 0.022 | 0.292 | 0.109 | 0.250 | 0.093 | 0.226 | 0.084 |
$25,000–$50,000 | −0.151 | −0.067 | 0.115 | 0.051 | 0.101 | 0.045 | 0.091 | 0.040 |
$50,001–$75,000 | 0.146 | 0.056 | 0.170 | 0.066 | 0.102 | 0.039 | 0.086 | 0.033 |
$75,001–$100,000 | −0.003 | −0.001 | 0.247 | 0.078 | 0.182 | 0.058 | 0.169 | 0.054 |
$100,001–$125,000 | −0.447 | −0.082 | 0.051 | 0.009 | −0.053 | −0.010 | −0.044 | −0.008 |
$125,001–$150,000 | 0.321 | 0.046 | 0.092 | 0.013 | 0.010 | 0.001 | 0.014 | 0.002 |
MTM constructs | ||||||||
Emotional transformation | - | - | 0.293 ** | 0.784 | 0.180 ** | 0.482 | 0.168 ** | 0.450 |
Practice for change | - | - | - | - | 0.144 ** | 0.366 | 0.111 ** | 0.282 |
Changes in social environment | - | - | - | - | - | - | 0.032 * | 0.141 |
R2 | 0.052 | - | 0.645 | - | 0.687 | - | 0.694 | - |
F | 1.479 | - | 43.849 ** | - | 47.952 ** | - | 45.254 ** | - |
ΔR2 | 0.052 | - | 0.593 | - | 0.042 | - | 0.007 | - |
ΔF | 1.479 | - | 403.072 ** | - | 32.208 ** | - | 5.557 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Batra, K.; Johansen, C.; Raich, S. Explaining Correlates of Cervical Cancer Screening among Minority Women in the United States. Pharmacy 2022, 10, 30. https://doi.org/10.3390/pharmacy10010030
Sharma M, Batra K, Johansen C, Raich S. Explaining Correlates of Cervical Cancer Screening among Minority Women in the United States. Pharmacy. 2022; 10(1):30. https://doi.org/10.3390/pharmacy10010030
Chicago/Turabian StyleSharma, Manoj, Kavita Batra, Christopher Johansen, and Siddharth Raich. 2022. "Explaining Correlates of Cervical Cancer Screening among Minority Women in the United States" Pharmacy 10, no. 1: 30. https://doi.org/10.3390/pharmacy10010030
APA StyleSharma, M., Batra, K., Johansen, C., & Raich, S. (2022). Explaining Correlates of Cervical Cancer Screening among Minority Women in the United States. Pharmacy, 10(1), 30. https://doi.org/10.3390/pharmacy10010030