Intravenous versus Oral Step-Down for the Treatment of Staphylococcus aureus Bacteremia in a Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endpoints
2.2. Definitions
2.3. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, R.F.; Hsu, A.J.; Stockmann, C.; Olson, J.A.; Bryan, M.; Hersh, A.L.; Tamma, P.D.; Gerber, J.S. Epidemiology of methicillin-resistant Staphylococcus aureus bacteremia in children. Pediatrics 2017, 139, e20170183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, A.P.S.; Blyth, C.C.; Campbell, A.J.; Bowen, A.C. Infection characteristics and treatment of Staphylococcus aureus bacteremia at a tertiary children’s hospital. BMC Infect. Dis. 2018, 18, 387. [Google Scholar] [CrossRef]
- Murdoch, F.; Danial, J.; Morris, A.K.; Czarniak, E.; Bishop, J.L.; Glass, E.; Imrie, L.J. The Scottish enhanced Staphylococcus aureus bacteremia surveillance programme: The first 18 months of data in children. J. Hosp. Infect. 2017, 97, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, J.C.; Kaplan, S.L.; Vallejo, J.G. The Influence of the Route of Antibiotic Administration, Methicillin Susceptibility, Vancomycin Duration and Serum Trough Concentration on Outcomes of Pediatric Staphylococcus aureus Bacteremic Osteoarticular Infection. Pediatr. Infect. Dis. J. 2017, 36, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- Holland, T.L.; Raad, I.; Boucher, H.W.; Anderson, D.J.; Cosgrove, S.E.; Aycock, P.S.; Baddley, J.W.; Chaftari, A.M.; Chow, S.-C.; Chu, V.H.; et al. Effect of algorithm-based therapy vs. usual care on clinical success and serious adverse events in patients with Staphylococcal bacteremia: A randomized clinical trial. JAMA 2018, 320, 1249–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidell, M.R.; Patel, N.; O’Donnell, J.N. Optimal treatment of MSSA bacteraemias: A meta-analysis of cefazolin versus antistaphylococcal penicillins. J. Antimicrob. Chemother. 2018, 73, 2643–2651. [Google Scholar] [CrossRef]
- Lewis, P.O.; Heil, E.L.; Covert, K.L.; Cluck, D.B. Treatment strategies for persistent methicillin-resistant Staphylococcus aureus bacteraemia. J. Clin. Pharm. Ther. 2018, 43, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Gudiol, C.; Cuervo, G.; Shaw, E.; Pujol, M.; Carratala, J. Pharmacotherapeutic options for treating Staphylococcus aureus bacteremia. Expert. Opin. Pharmacother. 2017, 18, 1947–1963. [Google Scholar] [CrossRef]
- Fowler, V.G., Jr.; Olsen, M.K.; Corey, G.R.; Wood, C.W.; Cabell, C.H.; Reller, L.B.; Cheng, A.C.; Dudley, T.; Oddone, E.Z. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch. Intern. Med. 2003, 163, 2066–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thwaites, G.E.; Edgeworth, J.D.; Gkrania-Klotsas, E.; Kirby, A.; Tilley, R.; Torok, E.; Walker, S.; Wertheim, H.; Wilson, P.; Llewelyn, M. Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect. Dis. 2011, 11, 208–222. [Google Scholar] [CrossRef]
- Saavedra-Lozano, J.; Falup-Pecurariu, O.; Faust, S.N.; Girschick, H.; Hartwig, N.; Kaplan, S.; Lorrot, M.; Mantadakis, E.; Peltola, H.; Rojo, P.; et al. European Society for Pediatric Infectious Diseases practice guideline: Bone and joint infections. Pediatr. Infect. Dis. J. 2017, 36, 788–799. [Google Scholar] [CrossRef]
- Wood, J.B.; Fricker, G.P.; Beekmann, S.E.; Polgreen, P.; Creech, C.B. Practice Patterns of Providers for the Management ofStaphylococcus aureus Bacteremia in Children: Results of an Emerging Infections Network Survey. J. Pediatr. Infect. Dis. Soc. 2018, 7, e152–e155. [Google Scholar] [CrossRef] [Green Version]
- Pääkkönen, M.; Kallio, P.E.; Kallio, M.J.T.; Peltola, H. Does Bacteremia Associated With Bone and Joint Infections Necessitate Prolonged Parenteral Antimicrobial Therapy? J. Pediatr. Infect. Dis. Soc. 2015, 4, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Bupha-Intr, O.; Blackmore, T.; Bloomfield, M. Efficacy of Early Oral Switch with β-Lactams for Low-Risk Staphylococcus aureus Bacteremia. Antimicrob. Agents. Chemother. 2020, 64, e02345-19. [Google Scholar] [CrossRef] [PubMed]
- Kouijzer, I.J.E.; van Leerdam, E.J.; Gompelman, M.; Tuinte, R.A.M.; Aarntzen, E.H.J.G.; Berrevoets, M.A.H.; Maat, I.; Bleeker-Rovers, C.P.; van Crevel, R.; Oever, J.T. Intravenous to Oral Switch in Complicated Staphylococcus aureus Bacteremia Without Endovascular Infection: A Retrospective Single-Center Cohort Study. Clin. Infect. Dis. 2021, 73, 895–898. [Google Scholar] [CrossRef]
- Willekens, R.; Puig-Asensio, M.; Ruiz-Camps, I.; Larrosa, M.N.; González-López, J.J.; Rodríguez-Pardo, D.; Fernández-Hidalgo, N.; Pigrau, C.; Almirante, B. Early Oral Switch to Linezolid for Low-risk Patients with Staphylococcus aureus Bloodstream Infections: A Propensity-matched Cohort Study. Clin. Infect. Dis. 2019, 69, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Pai, S.; Enoch, D.A.; Aliyu, S.H. Bacteremia in children: Epidemiology, clinical diagnosis and antibiotic treatment. Expert Rev. Anti. Infect. Ther. 2015, 13, 1073–1088. [Google Scholar] [CrossRef] [PubMed]
- Kesson, A.M.; Kakakios, A. Immunocompromised children: Conditions and infectious agents. Paediatr. Respir. Rev. 2007, 8, 231–239. [Google Scholar] [CrossRef]
- Keren, R.; Shah, S.S.; Srivastava, R.; Rangel, S.; Bendel-Stenzel, M.; Harik, N.; Hartley, J.; Lopez, M.; Seguias, L.; Tieder, J.; et al. Comparative Effectiveness of Intravenous vs. Oral Antibiotics for Postdischarge Treatment of Acute Osteomyelitis in Children. JAMA Pediatr. 2015, 169, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Pääkkönen, M.; Kallio, P.; Kallio, M.J.T. Osteomyelitis-Septic Arthritis Study Group. Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis in childhood. Pediatr. Infect. Dis. J. 2010, 29, 1123–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumarachandran, G.; Johnson, J.K.; Shirley, D.-A.; Graffunder, E.; Heil, E.L. Predictors of Adverse Outcomes in Children With Staphylococcus aureus Bacteremia. J. Pediatr. Pharmacol. Ther. 2017, 22, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.A.; Lee, S.M.; Peck, K.R.; Joo, E.J.; Oh, E.G. Impact of methicillin-resistance on mortality in children and neonates with Staphylococcus aureus bacteremia: A meta-analysis. Infect. Chemother. 2013, 45, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
Characteristic, n (%) or Median (IQR) | All | IV Only | Oral Step-Down | p-Value |
---|---|---|---|---|
(n = 101) | (n = 42) | (n = 59) | ||
Age, years | 7.9 (3.0, 12.2) | 9.6 (5.6, 13.0) | 5.7 (2.3, 11.9) | 0.071 |
Male | 53 (52.5) | 21 (50.0) | 32 (54.2) | 0.691 |
Race | 0.474 | |||
Black | 48 (47.5) | 17 (40.5) | 31 (52.5) | |
White | 46 (45.5) | 22 (52.4) | 24 (40.7) | |
Other | 7 (6.9) | 3 (7.1) | 4 (6.8) | |
Comorbidity | ||||
None | 57 (56.4) | 24 (55.8) | 33 (56.9) | 0.813 |
Premature Birth | 16 (15.8) | 5 (11.9) | 11 (18.6) | 0.418 |
Chronic Lung Disease | 14 (13.9) | 4 (9.5) | 10 (16.9) | 0.385 |
Eczema | 13 (12.9) | 5 (11.9) | 8 (13.6) | 1.000 |
Heart Disease | 10 (9.9) | 6 (14.3) | 4 (6.8) | 0.312 |
Neuromuscular Disease | 4 (4.0) | 1 (2.4) | 3 (5.1) | 0.639 |
End-Stage Renal Disease | 3 (3.0) | 3 (7.0) | 0 (0) | 0.069 |
Diabetes Mellitus | 1 (1.0) | 0 (0) | 1 (1.7) | 1.000 |
Immunosuppression ^ | 87 (86.1) | |||
None | 8 (7.9) | 29 (69.0) | 58 (98.3) | <0.001 |
Immunosuppressive Pharmacotherapy * | 8 (19.0) | 0 (0) | 0.001 | |
Neutropenia | 8 (7.9) | |||
Hematopoietic Stem Cell Transplant ** | 3 (3.0) | 7 (16.7) | 1 (1.7) | 0.010 |
3 (7.1) | 0 (0) | 0.074 | ||
Onset of Infection | < 0.001 | |||
Community | 63 (62.3) | 13 (31.0) | 50 (84.7) | |
Hospital | 13 (12.9) | 11 (26.2) | 2 (3.4) | |
Healthcare-Associated | 25 (24.7) | 18 (42.9) | 7 (11.9) | |
Duration of Fever, Days | 3.0 (2.0, 5.5) | 3.0 (1.0, 6.0) | 3.0 (2.0, 5.3) | 0.688 |
WBC Count, Initial (n = 100) | 12.7 (8.8, 18.7) | 10.5 (5.1, 17.1) | 13.9 (11.2, 21.6) | 0.011 |
CRP | ||||
Initial (n = 69) | 15.4 (5.2, 27.0) | 8.0 (3.7, 27.5) | 16.6 (6.2, 27.0) | 0.291 |
Max (n = 71) | 19.0 (7.0, 32.8) | 18.6 (4.1, 30.5) | 19 (7.5, 33.4) | 0.332 |
ESR, Initial (n = 60) | 57.0 (36.3, 87.8) | 51.0 (25.0, 91.0) | 59.5 (37.0, 87.3) | 0.374 |
Time to Therapy (hours) | 4.0 (1.0, 14.0) | 3.5 (1.0, 13.0) | 5.0 (1.0, 15.0) | 0.741 |
Primary Focus of Infection | ||||
Osteomyelitis | 33 (32.6) | 5 (11.9) | 28 (47.4) | < 0.001 |
Device | 23 (22.8) | 18 (42.9) | 5 (8.5) | < 0.001 |
SSTI | 8 (7.9) | 0 (0) | 8 (13.6) | 0.020 |
Pneumonia | 7 (6.9) | 5 (11.9) | 2 (3.4) | 0.132 |
Septic Arthritis | 7 (6.9) | 3 (7.1) | 4 (6.8) | 1.000 |
Deep Tissue Abscess | 6 (5.9) | 1 (2.4) | 5 (8.5) | 0.236 |
Endocarditis | 5 (4.9) | 5 (11.9) | 0 (0) | 0.005 |
Pyomyositis | 6 (5.9) | 1 (2.3) | 5 (8.6) | 0.236 |
Unknown | 6 (5.9) | 4 (9.5) | 2 (3.4) | 0.397 |
Multiple Foci of Infection | 47 (46.5) | 15 (35.7) | 32 (54.2) | 0.073 |
Methicillin Resistance | 56 (55.4) | 26 (60.5) | 30 (51.7) | 0.313 |
Endpoint, n (%) or | All | IV Only | Oral Step-Down | p-Value |
---|---|---|---|---|
Median (IQR) | (n = 101) | (n = 42) | (n = 59) | |
30-Day Readmission * | 13/96 (13.5) | 10 (25.6) | 3 (5.3) | 0.006 |
90-Day Readmission * | 18/96 (18.6) | 13/39 (33.3) | 5/57 (8.8) | 0.003 |
Inpatient Mortality | ||||
All-Cause | 5 (5.0) | 4 (9.5) | 1 (1.7) | 0.160 |
Attributable | 1 (1.0) | 1 (2.3) | 0 (0) | 0.426 |
Reinfection | 4/97 (4.1) | 4/40 (10.0) | 0/57 (0) | 0.026 |
Recurrence | 3/98 (3.1) | 2/40 (5.0) | 1/58 (1.7) | 0.570 |
Persistent Bacteremia | 49/100 (49.0) | 24/42 (57.1) | 25/58 (43.9) | 0.224 |
Clinical Failure—Composite | 55 (54.5) | 28 (65.1) | 27 (46.6) | 0.064 |
Length of Stay | ||||
Total | 9.0 (6.0, 18.0) | 11.0 (8.0, 21.0) | 7.0 (5.0, 11.0) | 0.001 |
Postinfection | 8.0 (6.0, 15.0) | 10.0 (7.0, 16.0) | 7.0 (5.0, 11.0) | 0.003 |
Duration of Bacteremia | 4.0 (3.0, 5.0) | 4.0 (3.0, 6.0) | 4.0 (3.0, 5.0) | 0.547 |
PICU Admission | 37 (36.6) | 21 (50.0) | 15 (25.4) | 0.009 |
Complicated Bacteremia | 67 (66.3) | 29 (69.0) | 38 (64.4) | 0.674 |
Infectious Diseases Consultation | 82 (81.2) | 31 (73.8) | 51 (86.4) | 0.127 |
Characteristic, n (%) or Median (IQR) | All | IV Only | Oral Step-Down | p-Value |
---|---|---|---|---|
(n = 101) | (n = 42) | (n = 59) | ||
Primary IV Therapy | ||||
Vancomycin | 50 (50.5) | 26 (61.9) | 24 (41.4) | 0.044 |
Nafcillin/Oxacillin | 21 (20.8) | 5 (11.6) | 16 (27.6) | 0.051 |
Cefazolin | 9 (8.9) | 4 (9.3) | 5 (8.5) | 0.720 |
Clindamycin | 17 (16.8) | 5 (11.6) | 12 (20.7) | 0.229 |
Ceftriaxone | 2 (2.0) | 0 (0) | 2 (3.4) | 0.506 |
Other * | 2 (2.0) | 2 (4.7) | 0 (0) | 0.179 |
Primary PO Therapy ^ | ||||
Clindamycin | 29 (28.7) | - | 29 (49.2) | - |
Cephalexin | 21 (20.8) | - | 21 (35.6) | - |
Sulfamethoxazole- Trimethoprim | 4 (4.0) | - | 4 (6.7) | - |
Linezolid | 3 (3.0) | - | 3 (5.1) | - |
Other * | 3 (3.0) | - | 3 (5.1) | - |
Doxycycline | 1 (1.0) | - | 1 (1.7) | - |
Miscellaneous | ||||
Number of Antistaphylococcal Agents | 2 (2, 4) | 2 (1, 3) | 3 (2, 4) | 0.006 |
Concomitant Antibiotic Therapy | 45 (44.6) | 26 (61.9) | 19 (32.8) | 0.004 |
Duration of Therapy, in Days | ||||
Total | 30.0 (14, 43.0) | 16.0 (14.0, 42.0) | 33.0 (25.5, 48.0) | 0.001 |
IV | 12.0 (5.5, 24.5) | 16.0 (14.0, 42.0) | 6.0 (4.0, 12.3) | <0.001 |
PO | 25.0 (14.0, 42.0) | - | 26.0 (14.0, 42.0) | - |
Endpoint, n (%) or Median (IQR) | MSSA | MRSA | p-Value |
---|---|---|---|
(n = 45) | (n = 56) | ||
Onset of Infection | |||
Community | 29 (64) | 34 (61) | 0.837 |
Hospital | 7 (16) | 6 (11) | 0.556 |
Healthcare-Associated | 9 (20) | 16 (28) | 0.361 |
Primary Focus of Infection | |||
Osteomyelitis | 13 (29) | 20 (36) | 0.526 |
Device | 9 (20) | 14 (25) | 0.637 |
SSTI | 4 (9) | 4 (7) | 1.000 |
Pneumonia | 2 (4) | 5 (9) | 0.457 |
Septic Arthritis | 4 (9) | 3 (5) | 0.697 |
Deep Tissue Abscess | 4 (9) | 2 (4) | 0.403 |
Endocarditis | 1 (2) | 4 (7) | 0.378 |
Pyomyositis | 3 (7) | 3 (5) | 1.000 |
Unknown | 5 (11) | 1 (2) | 0.086 |
Oral Step-down Performed | 28 (62) | 30 (54) | 0.2674 |
Primary IV Therapy—MRSA | - | ||
Vancomycin | - | 43 (77) | |
Clindamycin | - | 11 (20) | |
Other | - | 2 (4) | |
Primary IV Therapy—MSSA | - | ||
Vancomycin | 7 (16) | - | |
Antistaphylococcal Penicillins | 15 (33) | - | |
Cefazolin | 9 (20) | - | |
Clindamycin | 6 (13) | - | |
Other | 8 (18) | - | |
Primary PO Therapy—MRSA ^ | - | ||
Clindamycin | - | 23 (72) | |
Sulfamethoxazole-Trimethoprim | - | 4 (13) | |
Doxycycline | - | 1 (3) | |
Linezolid | - | 2 (6) | |
Other | - | 2 (6) | |
Primary PO therapy—MSSA | - | ||
Cephalexin | 19 (66) | - | |
Clindamycin | 6 (21) | - | |
Linezolid | 1 (3) | - | |
Other | 3 (8) | - | |
Duration of Therapy, in Days | 20 (18–38) | 42 (16–44) | 0.018 |
Persistent Bacteremia | 18 (40) | 31 (55) | 0.162 |
Duration of Bacteremia, in Days | 3 (2–5) | 4 (3–6) | 0.062 |
30-Day Readmission * | 6/43 (13) | 7/53 (13) | 1.000 |
90-Day Readmission * | 10/43 (22) | 8/53 (14) | 0.436 |
Inpatient Mortality | |||
All-Cause | 2 (4) | 3 (5) | 1.000 |
Attributable | 0 (0) | 1 (2) | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunter, S.G.; Wingler, M.J.B.; Cretella, D.A.; Wagner, J.L.; Barber, K.E.; Stover, K.R. Intravenous versus Oral Step-Down for the Treatment of Staphylococcus aureus Bacteremia in a Pediatric Population. Pharmacy 2022, 10, 16. https://doi.org/10.3390/pharmacy10010016
Gunter SG, Wingler MJB, Cretella DA, Wagner JL, Barber KE, Stover KR. Intravenous versus Oral Step-Down for the Treatment of Staphylococcus aureus Bacteremia in a Pediatric Population. Pharmacy. 2022; 10(1):16. https://doi.org/10.3390/pharmacy10010016
Chicago/Turabian StyleGunter, Sarah Grace, Mary Joyce B. Wingler, David A. Cretella, Jamie L. Wagner, Katie E. Barber, and Kayla R. Stover. 2022. "Intravenous versus Oral Step-Down for the Treatment of Staphylococcus aureus Bacteremia in a Pediatric Population" Pharmacy 10, no. 1: 16. https://doi.org/10.3390/pharmacy10010016
APA StyleGunter, S. G., Wingler, M. J. B., Cretella, D. A., Wagner, J. L., Barber, K. E., & Stover, K. R. (2022). Intravenous versus Oral Step-Down for the Treatment of Staphylococcus aureus Bacteremia in a Pediatric Population. Pharmacy, 10(1), 16. https://doi.org/10.3390/pharmacy10010016