# OpenAP.top: Open Flight Trajectory Optimization for Air Transport and Sustainability Research

## Abstract

**:**

## 1. Introduction

#### 1.1. Short Overview of Flight Trajectory Optimizations

#### 1.2. Aircraft Performance Models and Optimization Scopes

#### 1.3. Contributions of This Paper

## 2. Aircraft Fuel and Emission Models

_{2}O , CO

_{2}, SO

_{X}, and soot are considered to be proportional [25] to the fuel flow regardless of the atmosphere conditions:

_{X}, CO, and HC, are first estimated based on the sea-level atmospheric conditions based on data from the ICAO engine emission databank. To simplify the model, piecewise linear interpolation models are designed to approximate emissions under different thrust conditions. After that, the Fuel Flow Method 2 developed by Boeing [26] is used to correct the emission values based on the flight altitude.

## 3. Non-Linear Optimal Control for Trajectory Optimization Problems

#### 3.1. System Equations

#### 3.2. Non-Linear Optimal Control

#### 3.3. Numerical Approximations

#### 3.4. Solver

## 4. Flight Trajectory Optimization Constraints

#### 4.1. Complete Flight Trajectory

#### 4.1.1. Endpoint Constrains

#### 4.1.2. Path Constrains for States

#### 4.1.3. Path Constraints for Aircraft Performance

#### 4.1.4. Path Constrains for Smooth Control Variable Changes

#### 4.2. Cruise-Only Flight Trajectory

#### 4.2.1. Additional (Optional) Constrains for Cruise Flight

#### 4.3. Climb-Only Flight Trajectory

#### 4.4. Descent-Only Flight Trajectory

#### 4.5. Multiphase Complete Trajectory

## 5. Objective Functions

#### 5.1. Optimizing for Fuel Consumption

#### 5.2. Optimizing for Flight Time

#### 5.3. Optimizing for Cost Index

#### 5.4. Minizing Global Warming and Temperature Potential

_{2}at different time horizons (20, 50, and 100 years), while GTP models the temperature change at the end of these different periods.

## 6. Experiments

#### 6.1. Single Trajectory and Flight Phases Optimizations

#### 6.1.1. Optimization of the Entire Trajectory

#### 6.1.2. Optimization of Different Flight Phases

#### 6.2. Objective Metric

_{2}compared to other emissions. Since CO

_{2}has a linear correlation to fuel consumption, these objectives are essentially the same as minimizing fuel consumption.

_{X}and SO

_{X}have a very large negative effect when contributing to the temperature potential at 20-year horizon. When minimizing GTP20, the optimizer yields trajectories that produce as much NO

_{X}and SO

_{X}as possible, which translates to greater fuel consumption.

#### 6.3. Uncertainties

#### 6.3.1. The Influences of Takeoff Mass

#### 6.3.2. Effects of Engine Configurations

#### 6.3.3. Simple Analysis of Cost Index

#### 6.3.4. Comprehensive Analysis of Initial Mass and Cost Index Optimality

#### 6.3.5. Effects of Varying Wind Conditions

## 7. Discussion

#### 7.1. Insights into the Optimal Control Flight Optimization

_{X}and SO

_{X}as possible.

_{X}and SO

_{X}to climate cost would lead to a similar situation as the GTP20 objective for en-route flights. However, the air quality cost from these studies would provide a different insight into the optimal trajectories for the climb and descent flights.

#### 7.2. Limitations

#### 7.3. Future Recommendations

## 8. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Using the openap.top Python Library

- Produce a complete fuel optimal flight trajectory:
`import``openap.top as otop``optimizer = otop.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)``flight = optimizer.trajectory(objective="fuel")` - Produce a GWP50 optimal flight trajectory with an alternative engine type:
`import``openap.top as otop``optimizer = otop.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)``op.change_engine("V2527E-A5")``flight = optimizer.trajectory(objective="GWP50")` - Consider wind for a cost index optimized cruise flight:
`import``openap.top as otop``windfield = otop.wind.read_grib("era5_wind_file.grib")``optimizer = otop.Cruise("A320", "EHAM", "LGAV", m0=0.85)``op.enable_wind(windfield)``flight = optimizer.trajectory(objective="CI:50")`

`flight`variable is a

`DataFrame`object that can be further processed by the

`pandas`library.

## References

- Rosenow, J.; Fricke, H.; Schultz, M. Air traffic simulation with 4D multi-criteria optimized trajectories. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2589–2600. [Google Scholar]
- Airbus, S. Getting to Grips with Cost Index. In Flight Operations Support & Line Assistance; SmartCockpit: Geneva, Switzerland, 1998. [Google Scholar]
- Roberson, B. Fuel Conservation Strategies: Cost index explained. Boeing Aero Q.
**2007**, 2, 26–28. [Google Scholar] - Matthes, S.; Schumann, U.; Grewe, V.; Frömming, C.; Dahlmann, K.; Koch, A.; Mannstein, H. Climate optimized air transport. In Atmospheric Physics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 727–746. [Google Scholar]
- Matthes, S.; Grewe, V.; Lee, D.; Linke, F.; Shine, K.; Stromatas, S. ATM4E: A concept for environmentally-optimized aircraft trajectories. In Proceedings of the 2nd Greener Aviation 2016 Conference, Brussels, Belgium, 11–13 October 2016. [Google Scholar]
- Grewe, V.; Champougny, T.; Matthes, S.; Frömming, C.; Brinkop, S.; Søvde, O.A.; Irvine, E.A.; Halscheidt, L. Reduction of the air traffic’s contribution to climate change: A REACT4C case study. Atmos. Environ.
**2014**, 94, 616–625. [Google Scholar] [CrossRef] [Green Version] - Rosenow, J.; Lindner, M.; Fricke, H. Impact of climate costs on airline network and trajectory optimization: A parametric study. CEAS Aeronaut. J.
**2017**, 8, 371–384. [Google Scholar] [CrossRef] - Simorgh, A.; Soler, M.; González-Arribas, D.; Matthes, S.; Grewe, V.; Dietmüller, S.; Baumann, S.; Yamashita, H.; Yin, F.; Castino, F.; et al. A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning. Aerospace
**2022**, 9, 146. [Google Scholar] [CrossRef] - Yamashita, H.; Yin, F.; Grewe, V.; Jöckel, P.; Matthes, S.; Kern, B.; Dahlmann, K.; Frömming, C. Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0. Geosci. Model Dev.
**2020**, 13, 4869–4890. [Google Scholar] [CrossRef] - Delahaye, D.; Chaimatanan, S.; Mongeau, M. Simulated annealing: From basics to applications. In Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–35. [Google Scholar]
- Vergnes, F.; Bedouet, J.; Olive, X.; Sun, J. Environmental Impact Optimisation of Flight Plans in a Fixed and Free Route network. In Proceedings of the 9th International Conference for Research in Air Transportation, Tampa, FL, USA, 19–23 June 2022. [Google Scholar]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput.
**2019**, 11, 1–36. [Google Scholar] [CrossRef] - Dalmau, R.; Prats, X.; Baxley, B. Fast sensitivity-based optimal trajectory updates for descent operations subject to time constraints. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–10. [Google Scholar]
- Kamo, S.; Rosenow, J.; Fricke, H.; Soler, M. Robust CDO Trajectory Planning under Uncertainties in Weather Prediction. In Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar, Vienna, Austria, 17–21 June 2019; pp. 17–19. [Google Scholar]
- Nuic, A.; Poles, D.; Mouillet, V. BADA: An advanced aircraft performance model for present and future ATM systems. Int. J. Adapt. Control Signal Process.
**2010**, 24, 850–866. [Google Scholar] [CrossRef] - Lawson, C.; Madani, I.; Seresinhe, R.; Nalianda, D.K. Trajectory Optimization of Airliners to Minimize Environmental Impact. SAE Tech. Pap.
**2015**, 10. [Google Scholar] - Sun, J.; Hoekstra, J.M.; Ellerbroek, J. OpenAP: An open-source aircraft performance model for air transportation studies and simulations. Aerospace
**2020**, 7, 104. [Google Scholar] [CrossRef] - Sun, J.; Ellerbroek, J.; Hoekstra, J. WRAP: An open-source kinematic aircraft performance model. Transp. Res. Part C Emerg. Technol.
**2019**, 98, 118–138. [Google Scholar] [CrossRef] - Rodionova, O.; Sbihi, M.; Delahaye, D.; Mongeau, M. Optimization of aicraft trajectories in North Atlantic oceanic airspace. In Proceedings of the ICRAT 2012, 5th International Conference on Research in Air Transportation, Berkeley, CA, USA, 22–25 May 2012. [Google Scholar]
- Patrón, R.S.F.; Botez, R.M. Flight trajectory optimization through genetic algorithms for lateral and vertical integrated navigation. J. Aerosp. Inf. Syst.
**2015**, 12, 533–544. [Google Scholar] [CrossRef] - Liang, M.; Delahaye, D.; Marechal, P. Conflict-free arrival and departure trajectory planning for parallel runway with advanced point-merge system. Transp. Res. Part C Emerg. Technol.
**2018**, 95, 207–227. [Google Scholar] [CrossRef] - Dalmau, R.; Prats, X. Fuel and time savings by flying continuous cruise climbs: Estimating the benefit pools for maximum range operations. Transp. Res. Part D Transp. Environ.
**2015**, 35, 62–71. [Google Scholar] [CrossRef] - Sun, J. OpenAP.top Software Release (v1.1). Available online: https://zenodo.org/record/6832455#.YtEN_LfP02w (accessed on 20 June 2022). [CrossRef]
- ICAO. Aircraft Engine Emissions Databank. In International Civil Aviation Organization; ICAO: Montreal, QC, Canada, 2020. [Google Scholar]
- Jelinek, F.; Quesne, A.; Carlier, S. The free route airspace project (frap)-environmental benefit analysis. In Environmental Studies Business Area EUROCONTROL Experimental Centre, EEC/BA/ENV/Note; EUROCONTROL: Brussels, Belgium, 2002; Volume 4. [Google Scholar]
- DuBois, D.; Paynter, G.C. “Fuel Flow Method2” for Estimating Aircraft Emissions. SAE Trans.
**2006**, 115, 1–14. [Google Scholar] - Kennedy, M.; Kopp, S. Understanding Map Projections; Esri: Redlands, CA, USA, 2000. [Google Scholar]
- Kumar, M. World geodetic system 1984: A modern and accurate global reference frame. Mar. Geod.
**1988**, 12, 117–126. [Google Scholar] [CrossRef] - Biegler, L.T.; Zavala, V.M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng.
**2009**, 33, 575–582. [Google Scholar] [CrossRef] - Lee, D.S.; Fahey, D.; Skowron, A.; Allen, M.; Burkhardt, U.; Chen, Q.; Doherty, S.; Freeman, S.; Forster, P.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ.
**2021**, 244, 117834. [Google Scholar] [CrossRef] [PubMed] - Grobler, C.; Wolfe, P.J.; Dasadhikari, K.; Dedoussi, I.C.; Allroggen, F.; Speth, R.L.; Eastham, S.D.; Agarwal, A.; Staples, M.D.; Sabnis, J.; et al. Marginal climate and air quality costs of aviation emissions. Environ. Res. Lett.
**2019**, 14, 114031. [Google Scholar] [CrossRef] - Sun, J.; Dedoussi, I. Evaluation of Aviation Emissions and Environmental Costs in Europe Using OpenSky and OpenAP. In Proceedings of the 9th OpenSky Symposium, Brussels, Belgium, on 18–19 November 2021. [Google Scholar]
- Dalmau, R.; Prats, X.; Baxley, B. Sensitivity-Based Non-Linear Model Predictive Control for Aircraft Descent Operations Subject to Time Constraints. Aerospace
**2021**, 8, 377. [Google Scholar] [CrossRef]

**Figure 4.**Optimization of complete flight trajectory including climb, cruise, and descent phases. The example flight leaves EHAM, arrives at LGAV, and considers the real 3D wind conditions. Only the wind field at a specific altitude is shown for illustration purposes. (

**a**) Complete 4D trajectory and (

**b**) Multiphase 4D trajectory, both optimized for fuel consumption.

**Figure 5.**Optimization of different flight phases for minimizing fuel consumption. The example flight leaves EHAM, arrives at LGAV, and considers the real 3D wind conditions. Only the wind field at a specific altitude is shown for illustration purposes. (

**a**) Optimal cruise trajectory, (

**b**) Optimal climb trajectory, and (

**c**) Optimal descent trajectory.

**Figure 6.**Optimality metric using different objectives. A higher value indicates two objectives are more similar, and lower value indicates larger differences.

**Figure 7.**Fuel optimal trajectories under different takeoff weight (A320, optimized for fuel consumption).

**Figure 8.**Optimal trajectory with different engine types (A320, optimized for fuel consumption, with 90% of takeoff mass).

**Figure 12.**Optimal trajectories of the same origin and destination under different wind conditions over the course of a day.

**Figure 13.**Optimal ground track of the same origin and destination under different wind conditions over the course of a day. The wind fields at cruise altitudes are shown for illustration purposes.

${\mathit{C}}_{{\mathrm{CO}}_{2}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{H}}_{2}\mathrm{O}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{NO}}_{\mathrm{X}}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{SO}}_{\mathrm{X}}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{\mathsf{soot}}$ | |
---|---|---|---|---|---|

GWP_{20} | 1 | 0.22 | 619 | −832 | 4288 |

GWP_{50} | 1 | 0.1 | 205 | −392 | 2018 |

GWP_{100} | 1 | 0.06 | 114 | −226 | 1166 |

${\mathit{C}}_{{\mathrm{CO}}_{2}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{H}}_{2}\mathrm{O}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{NO}}_{\mathrm{X}}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{{\mathrm{SO}}_{\mathrm{X}}}\phantom{\rule{3.33333pt}{0ex}}$ | ${\mathit{C}}_{\mathsf{soot}}$ | |
---|---|---|---|---|---|

GTP_{20} | 1 | 0.07 | −222 | −241 | 1245 |

GTP_{50} | 1 | 0.01 | −69 | −38 | 195 |

GTP_{100} | 1 | 0.008 | 13 | −31 | 161 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sun, J.
OpenAP.top: Open Flight Trajectory Optimization for Air Transport and Sustainability Research. *Aerospace* **2022**, *9*, 383.
https://doi.org/10.3390/aerospace9070383

**AMA Style**

Sun J.
OpenAP.top: Open Flight Trajectory Optimization for Air Transport and Sustainability Research. *Aerospace*. 2022; 9(7):383.
https://doi.org/10.3390/aerospace9070383

**Chicago/Turabian Style**

Sun, Junzi.
2022. "OpenAP.top: Open Flight Trajectory Optimization for Air Transport and Sustainability Research" *Aerospace* 9, no. 7: 383.
https://doi.org/10.3390/aerospace9070383