# Conceptual Design and Feasibility Study of Winged Hybrid Airship

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Motivation

## 3. Description of Modules Used in the Study

#### 3.1. Geometry Module

#### 3.1.1. Envelope Design

^{®}was used to implement the Gertlter-58 shape generator algorithm to obtain the desired airship envelope shape.

#### 3.1.2. Wing Design

- 1.
- Define the spanwise vector which describes the local stations where the airfoil cross sections are to be generated. This specifies the inter-airfoil step lengths between any two consecutive sections.
- 2.
- Now, position the LE points of each airfoil section starting at the root, taking discrete step lengths as defined in Step 1. The direction of each step is defined using the local sweep and dihedral angle values at each station.
- 3.
- Generate the required airfoil scaled to the local chord length.
- 4.
- Rotate each section, first, around the LE by a magnitude equal to the local twist angle, and then, around the chord by the local dihedral angle.
- 5.
- Finally, the required planform is obtained by interpolation across the spanwise airfoil sections.

#### 3.2. Aerodynamics Module

^{®}functions developed in order to calculate the lift and drag data of the winged hybrid airship.

#### 3.2.1. Envelope Lift and Drag Estimation

#### 3.2.2. Estimation of Wing Aerodynamic Characteristics

#### 3.3. Energy Module

#### 3.4. Environment Module

^{®}functions. The output consists of the meridional and zonal wind component data as shown in Figure 13 for a user specified position in space, for a given day and time.

## 4. Design Methodology

^{®}has been chosen to carry out the optimization process, and generate the final optimum hybrid airship design.

#### 4.1. Particle Swarm Optimization

#### 4.2. Mass Estimation

## 5. Optimization Problem Formulation

^{®}function that has been developed for the generation of the wing solar panels have been written in such a way, that the input required is the starting point of the solar panels as a fraction of the total wing leading edge distance. This, in turn, entails that ${\left({X}_{s}\right)}_{wing}$ = 0 describes the starting location of the solar panels at the wing root section, while ${\left({X}_{s}\right)}_{wing}$ = 1 describes the starting location at the wing tip section, which is, of course, not a viable solution.

## 6. Results

#### 6.1. Optimal Solutions for Different Seasons

#### 6.1.1. Winged Hybrid Airship Results

#### 6.1.2. Conventional Airship Results

#### 6.2. Comparison between Optimal Solutions of the Two Airship Configurations

## 7. Conclusions

- 1.
- Incorporate the selection of an appropriate airfoil for the wing, as a part of the MDO process. This would result in further optimization of the airfoil and wing resulting in more sophisticated solutions.
- 2.
- Accurate aerodynamic module to estimate lift and drag of the complete winged airship system.
- 3.
- Structural analysis, which includes aeroelastic effects, in order to determine the feasibility of the optimal configurations.
- 4.
- Research work focusing on improvement of the wing mass estimation for HB airships.
- 5.
- An additional thermal module could be added to study the effects of the thermal environment on key performance parameters.
- 6.
- Control surface sizing and stability analysis to ensure a statically and dynamically stable system.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Alam, M.I.; Pant, R.S. Multidisciplinary approach for solar area optimization of high altitude airships. Energy Convers. Manag.
**2018**, 164, 301–310. [Google Scholar] [CrossRef] - Manikandan, M.; Pant, R.S. Conceptual Design Optimization of High-Altitude Airship Having a Tri-Lobed Envelope. In Advances in Multidisciplinary Analysis and Optimization; Springer: Berlin, Germany, 2020; pp. 49–61. [Google Scholar]
- d’Oliveira, F.A.; Melo, F.C.L.d.; Devezas, T.C. High-altitude platforms—Present situation and technology trends. J. Aerosp. Technol. Manag.
**2016**, 8, 249–262. [Google Scholar] [CrossRef] - ul Haque, A.; Asrar, W.; Sulaeman, E.; Omar, A.; Ali, J.S.M. Pugh Analysis for Configuration Selection of a Hybrid Buoyant Aircraft; Technical Report, SAE Technical Paper; SAE 2015 AeroTech Congress & Exhibition: Seattle, WA, USA, 2015. [Google Scholar]
- Carichner, G.E.; Nicolai, L.M. Fundamentals of Aircraft and Airship Design, Volume 2–Airship Design and Case Studies; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2013. [Google Scholar]
- Ceruti, A.; Marzocca, P. Conceptual approach to unconventional airship design and synthesis. J. Aerosp. Eng.
**2014**, 27, 04014035. [Google Scholar] [CrossRef] - Zhang, L.; Lv, M.; Zhu, W.; Du, H.; Meng, J.; Li, J. Mission-based multidisciplinary optimization of solar-powered hybrid airship. Energy Convers. Manag.
**2019**, 185, 44–54. [Google Scholar] [CrossRef] - Lv, M.; Li, J.; Zhu, W.; Du, H.; Meng, J.; Sun, K. A theoretical study of rotatable renewable energy system for stratospheric airship. Energy Convers. Manag.
**2017**, 140, 51–61. [Google Scholar] [CrossRef] - Buerge, B. The suitability of hybrid vs. conventional airships for persistent surveillance missions. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 1014. [Google Scholar]
- Tozer, T.; Grace, D. High-altitude platforms for wireless communications. Electron. Commun. Eng. J.
**2001**, 13, 127–137. [Google Scholar] [CrossRef] [Green Version] - Karapantazis, S.; Pavlidou, F. Broadband communications via high-altitude platforms: A survey. IEEE Commun. Surv. Tutor.
**2005**, 7, 2–31. [Google Scholar] [CrossRef] - Colozza, A.; Dolce, J.L. High-altitude, long-endurance airships for coastal surveillance. In NASA Technical Report, NASA/TM-2005-213427; NASA: Washington, DC, USA, 2005. [Google Scholar]
- Tsujii, T.; Rizos, C.; Wang, J.; Dai, L.; Roberts, C.; Harigae, M. A navigation/positioning service based on pseudolites installed on stratospheric airships. In 5th International Symposium on Satellite Navigation Technology & Applications; Citeseer: Can berra, Australia, 2001; pp. 24–27. [Google Scholar]
- Du, H.; Zhu, W.; Wu, Y.; Zhang, L.; Li, J.; Lv, M. Effect of angular losses on the output performance of solar array on long-endurance stratospheric airship. Energy Convers. Manag.
**2017**, 147, 135–144. [Google Scholar] [CrossRef] - Zhang, L.; Lv, M.; Meng, J.; Du, H. Optimization of solar-powered hybrid airship conceptual design. Aerosp. Sci. Technol.
**2017**, 65, 54–61. [Google Scholar] [CrossRef] - Zhang, L.; Lv, M.; Meng, J.; Du, H. Conceptual design and analysis of hybrid airships with renewable energy. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2018**, 232, 2144–2159. [Google Scholar] [CrossRef] - Ul Haque, A.; Amri Hafiz, N.M.; Kashif, S.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, J. Design and Fabrication of a Winged Hybrid Airship Model for IIUM-LSWT; Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2015; Volume 1115, pp. 513–516. [Google Scholar]
- Haifeng, W.; Bifeng, S.; Xiaoping, Z. Configuration design and sizing optimization of a winged airship. In Proceedings of the 2011 International Conference on Network Computing and Information Security, Guilin, China, 14–15 May 2011; Volume 2, pp. 41–45. [Google Scholar]
- Andan, A.D.; Asrar, W.; Omar, A.A. Investigation of aerodynamic parameters of a hybrid airship. J. Aircr.
**2012**, 49, 658–662. [Google Scholar] [CrossRef] - Andan, A.D.; Asrar, W.; Omar, A.A. Aerodynamics of a hybrid airship. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1440, pp. 154–161. [Google Scholar]
- Asrar, W.; Omar, A.A.; Suleiman, E.; Ali, J.M. Static longitudinal stability of a hybrid airship. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2014; pp. 343–348. [Google Scholar]
- Haque, A.; Asrar, W.; Omar, A.; Sulaeman, E.; Ali, J. Power-off static stability analysis of a clean configuration of a hybrid buoyant aircraft. In Proceedings of the 7th Ankara InternatÕonal Aerospace Conference, METU, Ankara, Turkey, 11–13 September 2015; pp. 11–13. [Google Scholar]
- Haque, A.U.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, M.J. Effect of Side Wind on the Directional Stability and Aerodynamics of a Hybrid Buoyant Aircraft. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 40, p. 02006. [Google Scholar]
- Ul Haque, A.; Asrar, W.; Omar, A.A.; Suleiman, E. Wind tunnel testing on a generic model of a hybrid lifting hull. J. Aerosp. Technol. Manag.
**2016**, 8, 467–474. [Google Scholar] [CrossRef] [Green Version] - Haque, A.U.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, J.M. Conceptual design of a winged hybrid airship. In Proceedings of the 21st AIAA Lighter-Than-Air Systems Technology Conference, Atlanta, GA, USA, 16–20 June 2014; p. 2710. [Google Scholar]
- Haque, A.U.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, M.J. Framework of Conceptual Design Methodology for Hybrid Buoyant Aircraft. Aerotec. Missili Spaz.
**2016**, 95, 99–110. [Google Scholar] [CrossRef] - Zhang, K.s.; Han, Z.h.; Song, B.f. Flight performance analysis of hybrid airship. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009; p. 901. [Google Scholar]
- Zhang, K.s.; Han, Z.h.; Song, B.f. Flight performance analysis of hybrid airship: Revised analytical formulation. J. Aircr.
**2010**, 47, 1318–1330. [Google Scholar] [CrossRef] - Ul Haque, A.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Mohamed Ali, J.S. Stability and takeoff ground roll issues of hybrid buoyant aircraft. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 660, pp. 503–507. [Google Scholar]
- Haque, A.U.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, M.J. Preliminary aerodynamic and static stability analysis for hybrid buoyant aerial vehicles at low speeds using digital DATCOM. Can. Aeronaut. Space J.
**2016**, 61, 51–60. [Google Scholar] [CrossRef] - Mackrodt, P. Further studies in the concept of delta-winged hybrid airships. J. Aircr.
**1980**, 17, 734–740. [Google Scholar] [CrossRef] - Li, F.; Ye, Z.; Gao, C. Design of a new tandem wings hybrid airship. Sci. China Phys. Mech. Astron.
**2012**, 55, 1886–1893. [Google Scholar] [CrossRef] - Liu, Y.; Zeng, P.; Lei, L.P. Experimental study on the stability properties of different design of tandem wing airship models. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 457, pp. 1611–1614. [Google Scholar]
- MI, P.; MENG, J.; Lyu, M. Aerodynamic and overall parameters analysis of buoyancy-lifting hybrid airship. J. Beijing Univ. Aeronaut. Astronaut.
**2015**, 41, 1108. [Google Scholar] - Ma, C.; Zhang, C.; Li, G. Parametric sensitivity study of unmanned buoyancy-lifting aerial vehicle. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 189, p. 08004. [Google Scholar]
- Manikandan, M.; Pant, R.S. Design optimization of a tri-lobed solar powered stratospheric airship. Aerosp. Sci. Technol.
**2019**, 91, 255–262. [Google Scholar] [CrossRef] - Liu, T.; Liou, W.; Schulte, M. Aeroship: A hybrid flight platform. J. Aircr.
**2009**, 46, 667–674. [Google Scholar] [CrossRef] - Khoury, G.A. Airship Technology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Rist, R.L.; Martin, B. A Hybrid Airship. Available online: https://newenergyandfuel.com/http:/newenergyandfuel/com/2009/12/18/a-hybrid-airship/ (accessed on 10 September 2021).
- Stockbridge, C.; Ceruti, A.; Marzocca, P. Airship research and development in the areas of design, structures, dynamics and energy systems. Int. J. Aeronaut. Space Sci.
**2012**, 13, 170–187. [Google Scholar] [CrossRef] [Green Version] - Hoffmann, M. Beautiful Concept Airship Looks 85 Years into the Future. Available online: https://senatus.net/article/wb-1010-reindy-allendra/ (accessed on 10 September 2021).
- Galitsky, G. Airship One: A Hybrid Between an Airplane and a Semi-Rigid Airship. Available online: https://www.tuvie.com/airship-one-a-hybrid-between-an-airplane-and-a-semi-rigid-airship/ (accessed on 10 September 2021).
- Ye, F.L.Z. Design and research for a new type buoyancy-lifting row flying-wings. Chin. J. Theor. Appl. Mech.
**2009**, 41, 850. [Google Scholar] - Baraniello, V.R.; Persechino, G. Conceptual Design of a Stratospheric Hybrid Platform for Earth Observation and Telecommunications. In Proceedings of the Aerospace Europe 6th Council of European Aerospace Societies Conference, Bucharest, Romania, 16–20 October 2017. [Google Scholar]
- Buckley, H.P.; Holt, N.; Leinonen, A.; Fournier, S.; Zingg, D.W. Preliminary Design of a Solar-Powered Hybrid Airship. J. Aircr.
**2020**, 57, 256–267. [Google Scholar] [CrossRef] - Lambe, A.B.; Martins, J.R. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim.
**2012**, 46, 273–284. [Google Scholar] [CrossRef] - Alam, M.I.; Pant, R.S. Surrogate Based Shape Optimization of Airship Envelopes. In Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference, Denver, CO, USA, 5–9 June 2017; p. 3393. [Google Scholar]
- Sóbester, A.; Forrester, A.I. Aircraft Aerodynamic Design: Geometry and Optimization; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Hoerner, S.F. Fluid-Dynamic Drag: Practical Information on Aerodynamic and Hydrodynamic Resistance; Cambridge University Press: Cambridge, UK, 1958. [Google Scholar]
- Regulations, F. Regulations on Airship Design Criteria; FAA P-8110-2; U.S. Department of Transportation: Washington, DC, USA, 2001.
- Brown, M.A. A Computational Method for Determining Distributed Aerodynamic Loads on Planforms of Arbitrary Shape in Compressible Subsonic Flow. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2013. [Google Scholar]
- Drela, M. XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics; Springer: Berlin, Germany, 1989; pp. 1–12. [Google Scholar]
- Phillips, W.F.; Snyder, D. Modern adaptation of Prandtl’s classic lifting-line theory. J. Aircr.
**2000**, 37, 662–670. [Google Scholar] [CrossRef] - Lv, M.; Li, J.; Du, H.; Zhu, W.; Meng, J. Solar array layout optimization for stratospheric airships using numerical method. Energy Convers. Manag.
**2017**, 135, 160–169. [Google Scholar] [CrossRef] - Liang, H.; Zhu, M.; Guo, X.; Zheng, Z. Conceptual design optimization of high altitude airship in concurrent subspace optimization. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 1180. [Google Scholar]
- ISO 2533; Standard Atmosphere. International Organization for Standardization: Geneva, Switzerland, 1975.
- Hedin, A. Horizontal wind model (HWM) (1990). Planet. Space Sci.
**1992**, 40, 556–557. [Google Scholar] [CrossRef] - Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci.
**2015**, 2, 301–319. [Google Scholar] [CrossRef] - Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 81–86. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell.
**2007**, 1, 33–57. [Google Scholar] [CrossRef] - Banks, A.; Vincent, J.; Anyakoha, C. A review of particle swarm optimization. Part I: Background and development. Nat. Comput.
**2007**, 6, 467–484. [Google Scholar] [CrossRef] - Aote, S.S.; Raghuwanshi, M.; Malik, L. A brief review on particle swarm optimization: Limitations & future directions. Int. J. Comput. Sci. Eng.
**2013**, 14, 196–200. [Google Scholar] - Benuwa, B.B.; Ghansah, B.; Wornyo, D.K.; Adabunu, S.A. A comprehensive review of Particle swarm optimization. Int. J. Eng. Res. Afr.
**2016**, 23, 141–161. [Google Scholar] [CrossRef] - Jain, N.; Nangia, U.; Jain, J. A review of particle swarm optimization. J. Inst. Eng. Ser. B
**2018**, 99, 407–411. [Google Scholar] [CrossRef] - Alsahlani, A.; Rahulan, T. Weight estimation of a conceptual wing for a high altitude, solar powered unmanned aerial vehicle. In 5th Aircraft Structural Design Conference; The Royal Aeronautical Society: London, UK, 2016. [Google Scholar]
- Colozza, A.; Dolce, J. Initial feasibility assessment of a high altitude long endurance airship. NASA/CR
**2003**, 212724, 2003. [Google Scholar] - Miller, G.; Stoia, T.; Harmala, D.; Atreya, S. Operational capability of high altitude solar powered airships. In Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences, Arlington, VA, USA, 26–28 September 2005; p. 7487. [Google Scholar]
- Arora, R.K. Optimization: Algorithms and Applications; Chapman and Hall/CRC: New York, NY, USA, 2019. [Google Scholar]
- Zhang, L.; Zhu, W.; Du, H.; Lv, M. Multidisciplinary design of high altitude airship based on solar energy optimization. Aerosp. Sci. Technol.
**2021**, 110, 106440. [Google Scholar] [CrossRef] - Manikandan, M.; Pant, R. A comparative study of conventional and tri-lobed stratospheric airships. Aeronaut. J.
**2021**, 125, 1–33. [Google Scholar] [CrossRef] - Pande, D.; Verstraete, D. Impact of solar cell characteristics and operating conditions on the sizing of a solar powered nonrigid airship. Aerosp. Sci. Technol.
**2018**, 72, 353–363. [Google Scholar] [CrossRef]

**Figure 2.**Dynalifter (Adapted from Ref. [39]).

**Figure 3.**Airship with delta wings (Adapted from Ref. [31]).

**Figure 4.**WB-1010 (Adapted from Ref. [41]).

**Figure 5.**The Airship One (Adapted from Ref. [42]).

**Table 1.**Design parameter values for NPL profile (Data from Ref. [47]).

Sr. No. | Symbol | Description | Value |
---|---|---|---|

1 | m | Point of maximum diameter | 0.432 |

2 | ${R}_{0}$ | Nose radius | 0.589 |

3 | ${R}_{1}$ | Tail radius | 0.425 |

4 | ${C}_{p}$ | Prismatic coefficient | 0.667 |

5 | L/D | Fineness ratio | 4.000 |

Sr. No. | Design Variable | Symbol |
---|---|---|

1 | Location of max. diameter | m |

2 | Nose radius | ${R}_{0}$ |

3 | Tail radius | ${R}_{1}$ |

4 | Prismatic coefficient | ${C}_{p}$ |

5 | Fineness ratio | $L/D$ |

6 | Airship length | L |

7 | Wing surface area | ${A}_{wing}$ |

8 | Aspect ratio | $A{R}_{wing}$ |

9 | Solar array area (wings) | ${A}_{sa}$ |

10 | Starting point of the array (wings) | ${\left({X}_{s}\right)}_{wing}$ |

11 | Starting point of the solar array (envelope) | ${\left({X}_{s}\right)}_{env}$ |

12 | Ending point of the solar array (envelope) | ${\left({X}_{f}\right)}_{env}$ |

13 | Intended angle of solar array (envelope) | ${\theta}_{sa}$ |

14 | Operating altitude | ${h}_{alt}$ |

Sr.No. | Design Variable | Symbol |
---|---|---|

1 | Airship length | L |

2 | Wing surface | ${A}_{wing}$ |

3 | Wing aspect ratio | $A{R}_{wing}$ |

4 | Solar array area (wing) | ${A}_{sa}$ |

5 | Starting point of solar array (wing) | ${\left({X}_{s}\right)}_{wing}$ |

6 | Starting point of solar array (envelope) | ${\left({X}_{s}\right)}_{env}$ |

7 | Ending point of solar array (envelope) | ${\left({X}_{f}\right)}_{env}$ |

8 | Intended angle of solar array (envelope) | ${\theta}_{sa}$ |

9 | Operating altitude | ${h}_{alt}$ |

Sr.No. | Design Variable | Symbol |
---|---|---|

1 | Airship length | L |

2 | Starting point of solar array (envelope) | ${\left({X}_{s}\right)}_{env}$ |

3 | Ending point of solar array (envelope) | ${\left({X}_{f}\right)}_{env}$ |

4 | Intended angle of solar array (envelope) | ${\theta}_{sa}$ |

5 | Operating altitude | ${h}_{alt}$ |

Parameter | Lower Limit | Upper Limit | Definition | Unit |
---|---|---|---|---|

L | 20 | 520 | 20 + 500$\times x\left(1\right)$ | m |

${A}_{wing}$ | 100 | 10,000 | 100 + 9900$\times x\left(2\right)$ | m${}^{2}$ |

$A{R}_{wing}$ | 2 | 4 | 2 + 2$\times x\left(3\right)$ | |

${A}_{sa}$ | 100 | 10,000 | 100 + 9900$\times x\left(4\right)$ | m${}^{2}$ |

${\left({X}_{s}\right)}_{wing}$ | 0 | 1 | $x\left(5\right)$ | |

${\left({X}_{s}\right)}_{env}$ | 0 | $3L/4$ | $(3L/4)\times x\left(6\right)$ | m |

${\left({X}_{f}\right)}_{env}$ | $L/4$ | L | $(L/4)+(3L/4)\times x\left(7\right)$ | m |

${\theta}_{sa}$ | 0 | $\pi $ | $0+\pi \times x\left(8\right)$ | rad |

${h}_{alt}$ | 15 | 20 | 15 + 5$\times x\left(9\right)$ | km |

Parameter | Definition | Value | Unit |
---|---|---|---|

${M}_{pay}$ | Payload mass | 250 | kg |

Airfoil (wing) | NACA 2312 | ||

${P}_{pay}$ | Power to payload | 5 | kW |

${\eta}_{prop}$ | Propulsive efficiency [18,70] | 72% | |

${\eta}_{SC}$ | Solar cell efficiency [1] | 12% | |

$\left({\displaystyle \frac{{C}_{DV,total}}{{C}_{DV,hull}}}\right)$ | Ratio of total drag coeff. to hull drag coeff. [55] | 2 | |

${\rho}_{batt}$ | Specific energy density of battery [71] | 200 | Wh/kg |

${\rho}_{prop}$ | Power density of propulsion system [5,7] | 440 | W/kg |

${\rho}_{pv}$ | Specific mass of solar panel [18,38] | 0.3 | kg/m${}^{2}$ |

${\rho}_{env}$ | Specific mass of envelope material [18,38] | 0.2 | kg/m${}^{2}$ |

${k}_{pur}$ | Helium gas purity [38,72] | 97% | |

${\eta}_{conv}$ | Convert efficiency [55] | 90% | |

${\eta}_{gear}$ | Gear efficiency [55] | 98% | |

${E}_{pack}$ | Solar cell packing area efficiency | 95% | |

${E}_{comp}$ | Electrical component efficiency | 95% | |

g | Acceleration due to gravity | 9.8065 | m/s${}^{2}$ |

$\psi $ | Airship yaw angle | 90 | deg. |

$\varphi $ | Airship roll angle | 0 | deg. |

$\theta $ | Airship pitch angle | 0 | deg. |

${X}_{LAT}$ | Latitude | 19.05 | deg. |

${X}_{LONG}$ | Longitude | 72.88 | deg. |

Parameter | Symbol | ${\mathit{I}}_{\mathbf{day}}$ | |||
---|---|---|---|---|---|

79 | 172 | 266 | 354 | ||

Altitude (km) | ${h}_{alt}$ | 19 | 15 | 15 | 19 |

Wind speed (m/s) | ${V}_{air}$ | 8.96 | 16.50 | 9.37 | 9.43 |

Length of the envelope (m) | L | 150 | 138 | 100 | 165 |

Width of the envelope (m) | D | 38 | 35 | 25 | 41 |

Volume of the envelope (m${}^{3}$) | ${V}_{env}$ | 110,835 | 86,871 | 32,491 | 147,176 |

Wing planform area (m${}^{2}$) | ${A}_{wing}$ | 9693 | 2134 | 3671 | 8552 |

Wing aspect ratio | $A{R}_{wing}$ | 2.18 | 4.00 | 2.32 | 4.00 |

Length of array (envelope) (m) | ${L}_{sa,env}$ | 11 | 49 | 11 | 31 |

Angle of array (envelope) (deg) | ${\theta}_{sa}$ | 68 | 78 | 90 | 33 |

Area of array (envelope) (m${}^{2}$) | ${A}_{sa,lobe}$ | 439 | 1591 | 438 | 529 |

Area of array (wing) (m${}^{2}$) | ${A}_{sa,wing}$ | 150 | 561 | 151 | 176 |

Total drag (N) | ${D}_{total}$ | 1552 | 3805 | 1197 | 1524 |

Total lift (N) | ${L}_{total}$ | 112,559 | 160,865 | 61,915 | 136662 |

Weight of the HB airship (N) | W | 112,557 | 160,839 | 61,914 | 136,655 |

Power required (kW) | ${P}_{req}$ | 626 | 2369 | 529 | 646 |

Power supplied (kW) | ${P}_{ava}$ | 627 | 2372 | 531 | 647 |

Parameter | Symbol | ${\mathit{I}}_{\mathbf{day}}$ | |||
---|---|---|---|---|---|

79 | 172 | 266 | 354 | ||

Altitude (km) | ${h}_{alt}$ | 19 | 15 | 15 | 19 |

Wind speed (m/s) | ${V}_{air}$ | 8.96 | 16.50 | 9.37 | 9.43 |

Length of the envelope (m) | L | 136 | 125 | 91 | 151 |

Width of the envelope (m) | D | 34 | 31 | 23 | 38 |

Volume of the envelope (${m}^{3}$) | ${V}_{env}$ | 82,926 | 64,353 | 24,693 | 112,451 |

Length of array (envelope) (m) | ${L}_{sa,env}$ | 13 | 38 | 10 | 10 |

Angle of array (envelope) ($deg$) | ${\theta}_{sa}$ | 23 | 52 | 49 | 44 |

Area of array (envelope) (m${}^{2}$) | ${A}_{sa,lobe}$ | 181 | 896 | 195 | 260 |

Total drag (N) | ${D}_{total}$ | 438 | 1947 | 379 | 449 |

Total lift (N) | ${L}_{total}$ | 73,102 | 101,282 | 38,863 | 88,804 |

Weight of the HB airship (N) | W | 73102 | 101,281 | 38,863 | 88,804 |

Power required (kW) | ${P}_{req}$ | 265 | 1274 | 254 | 265 |

Power supplied (kW) | ${P}_{ava}$ | 265 | 1274 | 254 | 265 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gangadhar, A.; Manikandan, M.; Rajaram, D.; Mavris, D.
Conceptual Design and Feasibility Study of Winged Hybrid Airship. *Aerospace* **2022**, *9*, 8.
https://doi.org/10.3390/aerospace9010008

**AMA Style**

Gangadhar A, Manikandan M, Rajaram D, Mavris D.
Conceptual Design and Feasibility Study of Winged Hybrid Airship. *Aerospace*. 2022; 9(1):8.
https://doi.org/10.3390/aerospace9010008

**Chicago/Turabian Style**

Gangadhar, Akshay, Murugaiah Manikandan, Dushhyanth Rajaram, and Dimitri Mavris.
2022. "Conceptual Design and Feasibility Study of Winged Hybrid Airship" *Aerospace* 9, no. 1: 8.
https://doi.org/10.3390/aerospace9010008