On the Handling Qualities of Two Flying Wing Aircraft Configurations
Abstract
:1. Introduction
2. Theory of Longitudinal-Lateral Coupling
2.1. Basic Coupled and Decoupled Modes
2.2. Weak Coupling and Mode Properties
2.3. Calculation of Frequency and Amplification Changes
3. Natural Stability of Flying-Wing Aircraft
3.1. Relevance of Longitudinal-Lateral Coupling
3.2. Longitudinal and Lateral Handling Qualities
3.3. Manouever Points of Two Kinds
4. Assessment of BWB 1 and BWB 2 Designs
4.1. The Dutch Roll, Spiral and Roll Modes
4.2. The Phugoid and Short-Period Modes
4.3. Implications for Control System Design
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
coefficients of polynomials (28) | |
coefficients of polynomials (29) | |
slope of manouever point linear approximation (45c) | |
x-component of angular velocity (4a) | |
y-component of angular velocity (1) | |
z-component of angular velocity (4a) | |
x component of linear velocity (1) | |
position of c.g. as percentage of m.a.c. (45a) | |
critical c.g. position for manouever point (46a–c) | |
y-component of linear velocity (4a) | |
z-component of linear velocity (1) | |
vertical acceleration (38) | |
A | characteristic polynomial of longitudinal stability sub-matrix (3b) |
B | characteristic polynomial of lateral stability sub-matrix (4b) |
C | characteristic polynomial of complete stability matrix (6a,b) |
characteristic polynomial of decoupled complete stability matrix (13b) | |
modal factor (10) | |
modal factor for decoupled stability matrix (13a) | |
lift coefficient slope (39b) | |
weak coupling coefficient (14c) | |
T | time to double amplitude (21c,d) |
X | aircraft state variables (1, 4a) |
Xi | coupled flight variables (5) |
decoupled flight variables (15) | |
Zij | stability matrix (2b) |
ε | small quantity (8) |
θ | Euler angle of pitch (1) |
δab | identity matrix (3a) |
Euler angle of bank (4a) | |
Euler angle of sideslip (Table 5) | |
eigenvalues (3a) for modes (18a,b; 20a–c) | |
damping ratio (3b) | |
decoupled damping ratio (9b) | |
natural exact coupled frequency (3b) | |
natural decoupled frequency (9a) | |
oscillation frequency (19d) | |
time constant (21b) | |
amplification ratio () | |
difference between the exact coupled and decoupled complete characteristic polynomial (27) | |
difference between the exact coupled and decoupled modal factor (14a–c) | |
difference between the exact coupled and decoupled natural frequency (9a) | |
difference between the exact coupled and decoupled damping ratio (9b) | |
Subscripts | |
p or 1 | phugoid mode |
s or 2 | short period mode |
d or 3 | dutch roll mode |
h or 4 | helical mode |
r or 4- | roll mode |
l or 4+ | spiral mode |
Superscripts | |
decoupled value of | |
Abbreviations | |
c.g. | center of gravity |
m.a.c. | mean aerodynamic chord |
CAP | Control Anticipation Parameter (38) |
BWB | Blended Wing Body |
HQs | handling qualities |
Symbols | |
time derivative of | |
variation of |
References
- Von Mises, R. Theory of Flight; McGraw-Hill: New York, NY, USA, 1945. [Google Scholar]
- Perkins, C.D.; Hage, R.E. Airplane, Performance, Stability and Control; Wiley: Hoboken, NJ, USA, 1949. [Google Scholar]
- George, L.; Vernet, J.F. Mécanique du Vol: Performances des Avions et Engins; Librarie Polytechique Ch. Béranger: Sablons, France, 1960. [Google Scholar]
- Rabister, W. Aircraft Dynamic Stability and Response; Pergamon: Oxford, UK, 1960. [Google Scholar]
- Lecomte, P. Mécanique du Vol: Les Qualités de Vol des Avions et Engines; Dunod: Paris, France, 1962. [Google Scholar]
- Miele, A. Flight Mechanics; Addison-Wesley: Boston, MA, USA, 1962; Volume 2. [Google Scholar]
- Etkin, B. Dynamics of Atmospheric Fight; Wiley: Boston, MA, USA, 1972. [Google Scholar]
- McRuer, D.; Ashkenas, I.; Graham, D. Aircraft Dynamics and Automatic Control; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Etkin, B. Dynamics of Flight Stability and Control; Wiley: Boston, MA, USA, 1982. [Google Scholar]
- Etkin, B.; Reid, L.D. Dynamics of Flight Stability and Control; Wiley: Boston, MA, USA, 1990. [Google Scholar]
- Lichota, P. Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV. Aerospace 2020, 7, 113. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Yue, T.; Liu, H.; Zhu, J.; Jia, X. Three-axis coupled flight control law design for flying wing aircraft using eigenstructure assignment method. Chin. J. Aeronaut. 2020, 33, 2510–2526. [Google Scholar] [CrossRef]
- Kaletka, J. BO-105 Identification Results, LS-178 on Rotorcraft System Identification; AGARD: Neuilly sur Seine, France, 1991. [Google Scholar]
- Cooper, G.E.; Harper, R.P. The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities; NASA TN D-5153: Huntsville, AL, USA, 1969. [Google Scholar]
- Heffley, R.K.; Jewell, W.F. Aircraft Handling Qualities Data; National Aeronautics and Space Administrative CR-2144: Huntsville, AL, USA, 1972. [Google Scholar]
- Nelson, R.C. Flight Stability and Automatic Control, 2nd. ed.; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- McCormick, B.W. Aerodynamics, Aeronautics and Flight Mechanics; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Catapang, D.R.; Tischler, M.B.; Biezad, D.J. Robust crossfeed design for hovering rotorcraft. Int. J. Robust Nonlinear Control 1994, 4, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Tischler, M.B. Advances in Flight Control; Taylor & Francis: Abingdon-on-Thames, UK, 1994. [Google Scholar]
- Russell, J.B. Performance and Stability of Aircraft, 1st ed.; Butterworth-Heinemann: Oxford, UK, 1996. [Google Scholar]
- Abzug, M.J.; Larrabee, E.E. Airplane Stability and Control: A History of the Technologies That Made Aviation Possible, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Vinh, N.X. Flight Mechanics of High-Performance Aircraft; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Cook, M.V. Flight Dynamics Principles; Arnold: London, UK, 1997. [Google Scholar]
- Gilmore, R.; Wakayama, S.; Roman, D. Optimization of high-subsonic blended-wing-body configurations. In Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization AIAA 2002-5666, Atlanta, GA, USA, 4–6 September 2002. [Google Scholar]
- Liebeck, R.H. Design of the blended wing body subsonic transport. J. Aircr. 2004, 41, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Re, R.J. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Number; NASA/TM-2005-213754: Huntsville, AL, USA, 2005. [Google Scholar]
- Chambers, J.R. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics; NASA SP-2005-4539: Huntsville, AL, USA, 2005. [Google Scholar]
- Nickol, C.L.; McCullers, L.A. Hybrid wing body configuration system studies. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition AIAA-2009-931, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Roman, D.; Allen, J.B.; Liebeck, R.H. Aerodynamic design challenges of the blended-wing-body subsonic transport. In Proceedings of the 18th Applied Aerodynamics Conference AIAA-2000-4335, Denver, CO, USA, 14–17 August 2000. [Google Scholar]
- Pambagjo, T.E.; Nakahashi, K.; Obayashi, S.; Matsushima, K. Aerodynamic design of a medium size blended wing body airplane. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit AIAA-2001-0129, Reno, NV, USA, 8–11 January 2001. [Google Scholar]
- Mialon, B.; Fol, T.; Bonnaud, C. Aerodynamic optimization of subsonic flying wing configurations. In In Proceedings of the 20th AIAA-2002-2931 applied aerodynamics conference, St. Louis, MO, USA, 24–26 June 2002. [Google Scholar]
- Roman, D.; Gilmore, R.; Wakayama, S. Aerodynamics of high subsonic blended-wing-body configurations. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit AIAA-2003-554, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Mialon, B.; Hepperle, M. Flying Wing Aerodynamics Studied at ONERA and DLR. 2005. Available online: https://www.yumpu.com/en/document/view/11653618/flying-wing-aerodynamics-studies-at-onera-and-dlr (accessed on 16 March 2021).
- Peigin, S.; Epstein, B. Computational fluid dynamics driven optimization of blended wing body aircraft. AIAA J. 2006, 44, 2736–2745. [Google Scholar] [CrossRef]
- Carter, M.B.; Vicroy, D.D.; Patel, D. Blended-wing-body transonic aerodynamics: Summary of ground tests and sample results. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition AIAA-2009-935, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Chambon, E.; Burlion, L.; Apkarian, P. Time-response shaping using output to input saturation transformation. Int. J. Control 2017, 91, 534–553. [Google Scholar] [CrossRef]
- Denieul, Y.; Bordeneuve, J.; Alazard, D.; Toussaint, C.; Taquin, G. Multicontrol Surface Optimization for Blended Wing–Body Under Handling Quality Constraints. J. Aircr. 2018, 55, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Khalid, A. Blended Wing Body Propulsion System Design. Int. J. Aviat. Aeronaut. Aerosp. 2017, 4, 4. [Google Scholar]
- Ammar, S.; Legros, C.; Trépanier, J.-Y. Conceptual design, performance and stability analysis of a 200 passengers Blended Wing Body aircraft. Aerosp. Sci. Technol. 2017, 71, 325–336. [Google Scholar] [CrossRef]
- Panagiotou, P.; Fotiadis-Karras, S.; Yakinthos, K. Conceptual design of a Blended Wing Body MALE UAV. Aerosp. Sci. Technol. 2018, 73, 32–47. [Google Scholar] [CrossRef]
- Dakka, S.; Johnson, O. Aerodynamic Design and Exploration of a Blended Wing Body Aircraft at Subsonic Speed. Int. J. Aviat. Aeronaut. Aerosp. 2019, 6, 17. [Google Scholar] [CrossRef]
- Kim, H.; Liou, M.-F. Flow simulation and drag decomposition study of N3-X hybrid wing-body configuration. Aerosp. Sci. Technol. 2019, 85, 24–39. [Google Scholar] [CrossRef]
- Khan, T. Design and CFD Analysis of a Blended Wing UAV (A Conceptual Design). J. Aerosp. Eng. Mech. 2019, 3, 156–160. [Google Scholar]
- Wang, G.; Zhang, M.; Tao, Y.; Li, J.; Li, D.; Zhang, Y.; Zhang, B. Research on analytical scaling method and scale effects for subscale flight test of blended wing body civil aircraft. Aerosp. Sci. Technol. 2020, 106, 106114. [Google Scholar] [CrossRef]
- Footohi, P.; Bouskela, A.; Shkarayev, S. Aerodynamic Characteristics of the Blended-Wing-Body VTOL UAV. J. Aerosp. Eng. Mech. 2020, 4, 187–300. [Google Scholar]
- Humphreys-Jennings, C.; Lappas, I.; Sovar, D.M. Conceptual Design, Flying, and Handling Qualities Assessment of a Blended Wing Body (BWB) Aircraft by Using an Engineering Flight Simulator. Aerospace 2020, 7, 51. [Google Scholar] [CrossRef]
- Jemitola, P.; Okonkwo, P. Review of Structural Issues in the Design of a Box Wing Aircraft. J. Aerosp. Eng. Mech. 2019, 3, 161–166. [Google Scholar]
- Kalinowski, M. Aero-Structural Optimization of Joined-Wing Aircraft. Trans. Aerosp. Res. 2017, 4, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Schlichting, H.; Truckenbrodt, E. Aerodynamik des Flugzeuges: Erster Band; Springer: Berlin, Germany, 2001. [Google Scholar]
- Obert, E. Aerodynamic Design of Transport Aircraft; IOS Press: Delft, The Netherlands, 2009. [Google Scholar]
- Torenbeek, E. Advanced Aircraft Design—Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes; John Wiley and Sons Ltd.: Chichester, UK, 2013. [Google Scholar]
- Campos, L.M.B.C.; Marques, J.M.G. On a Method of Lagrange Multipliers for Cruise Drag Minimization. J. Aerosp. Eng. Mech. 2021, in press. [Google Scholar]
- Clark, L.R.; Gerhold, C.H. Inlet noise reduction by shielding for the blended-wing-body airplane. In Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit AIAA-1999-1937, Bellevue, WA, USA, 10–12 May 1999. [Google Scholar]
- Diedrich, A.; Hileman, J.; Tan, D.; Willcox, K.; Spakovszky, Z. Multidisciplinary design and optimization of the silent aircraft. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2006-1323, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Hileman, J.I.; Spakovszky, Z.S.; Drela, M.; Sargeant, M. Airframe design for “silent” aircraft. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2007-453, Reno, NV, USA, 8–11 January 2007. [Google Scholar]
- Hileman, J.I.; Spakovszky, Z.S.; Drela, M.; Sargeant, M. Aerodynamic and aeroacoustic three-dimensional design for a “silent” aircraft. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2006-241, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Hileman, J.I.; Spakovszky, Z.S.; Drela, M.; Sargeant, M.A.; Jones, A. Airframe design for silent fuel-efficient aircraft. J. Aircr. 2010, 47, 956–969. [Google Scholar] [CrossRef] [Green Version]
- Campos, L.M.B.C. On physical aeroacoustics with some implications for low-noise aircraft design and airport operations. Aerospace 2015, 2, 17–90. [Google Scholar] [CrossRef]
- Bolsunovsky, A.L.; Buzoverya, N.P.; Gurevich, B.I.; Denisov, V.E.; Dunaevsky, A.I.; Shkadov, L.M.; Sonin, O.V.; Udzhuhu, A.J.; Zhurihin, J.P. Flying wing-problems and decisions. Aircr. Des. 2001, 4, 193–219. [Google Scholar] [CrossRef]
- Qin, N.; Vavalle, A.; Le Moigne, A.; Laban, M.; Hackett, K.; Weinerfelt, P. Aerodynamic considerations of blended wing body aircraft. Prog. Aerosp. Sci. 2004, 40, 321–343. [Google Scholar] [CrossRef]
- Li, P.; Zhang, B.; Chen, Y.; Yuan, C.; Lin, Y. Aerodynamic design methodology for a blended wing body transport. Chin. J. Aeronaut. 2012, 25, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Okonkwo, P.; Smith, H. Review of evolving trends in blended wing body aircraft design. Prog. Aerosp. Sci. 2016, 82, 1–23. [Google Scholar] [CrossRef]
- Campos, L.M.B.C. Linear Differential Equations and Oscillators; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Bihrle, W. A Handling Qualities Theory for Precise Flight Path Control; Technical Report, AFFDL-TR-65-198; Air Force Flight Dynamics Laboratory, WPAFB: Montgomery, OH, USA, 1966. [Google Scholar]
- Sturmer, S.R. Pitch rate sensitivity criterion for category C flight phases—Class IV aircraft. In AIAA Guidance, Navigation and Control Conference; AIAA 86-2201: New York, NY, USA, 1986. [Google Scholar]
- Hoh, R.H. Advances in Flying Qualities: Concepts and Criteria for a Mission Oriented Flying Qualities Specification; Technical Report, AGARD LS 157; AGARD: Washington, DC, USA, 1988. [Google Scholar]
- Neal, T.P.; Smith, R.E. An In-Flight Investigation to Develop Control System Design Criteria for Fighter Airplanes; Technical Report, AFFDL-TR-70-74; Wright Patterson AFB, Flight Dynamics Laboratory: Montgomery, OH, USA, 1970. [Google Scholar]
- Gibson, J.C. Piloted Handling Qualities Design Criteria for High Order Flight Control Systems; Technical Report, AGARD CP 333; AGARD: Washington, DC, USA, 1982. [Google Scholar]
- Gibson, J.C. The Definition, Design and Understanding of Aircraft Handling Qualities; Technical Report, Report LR-756; Delft University of Technology: Delft, The Netherlands, 1995. [Google Scholar]
- Gibson, J.C. Handling qualities for unstable combat aircraft. In Proceedings of the 15th Congress of the International Council of the Aeronautical Sciences, London, UK, 7–12 September 1986. [Google Scholar]
- Anonymous. Military Standard—Flying Qualities of Piloted Aircraft; Technical Report, MIL-STD-1797A; Department of Defense of U.S.A.: Washington, DC, USA, 1990.
- Anonymous. Defence Standard 00-970. Design and Airworthiness Requirements for Service Aircraft; Technical Report; UK Ministry of Defense: London, UK, 1983; Volume 1.
- Gautrey, J.E. Flying Qualities and Flight Control System Design for a Fly-by-Wire Transport Aircraft. Ph.D. Thesis, Cranfield University, Bedford, UK, 1998. [Google Scholar]
- Milne-Thomson, L.M. Theoretical Hydrodynamics; Dover: Mineola, NY, USA, 1958. [Google Scholar]
- Campos, L.M.B.C. Complex Analysis with Applications to Flows and Fields; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Gautrey, J.E.; Cook, M.V. A generic control anticipation parameter for aircraft handling qualities evaluation. Aeronaut. J. 1998, 102, 151–160. [Google Scholar]
- Hariyoshi, E.; Ranade, G.; Sahai, A. Control with actuation anticipation. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 5617–5622. [Google Scholar]
- Saussié, D.; Saydy, L.; Akhrif, O. Longitudinal flight control design with handling quality requirements. Aeronaut. J. 2006, 110, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Kun, Z.; Lixin, W.; Xiangsheng, T. Flying qualities reduction of fly-by-wire commercial aircraft with reconfiguration flight control laws. Procedia Eng. 2011, 17, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, D. The definition of short-period flying qualities characteristics via equivalent systems. J. Aircr. 1983, 20, 494–499. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Min-Jea, T. Optimization for Flight Control System with Constraints supplemented Handling Qualities. In Proceedings of the 26th Congress of the International Council of the Aeronautical Sciences, London, UK, 14–19 September 2008. [Google Scholar]
- Weiser, C.; Ossmann, D.; Looye, G. Design and flight test of a linear parameter varying flight controller. CEAS Aeronaut. J. 2020, 11, 955–969. [Google Scholar] [CrossRef]
- Elarbia, E.; Ghmmam, A.; Issa, S. On Flying-Handling Qualities of B747-100 Longitudinal Flight based on Gain Scheduling Control. In Proceedings of the International Conference on Technology, Engineering and Science (IConTES), Antalya, Turkey, 29 October–1 November 2020. [Google Scholar]
- Campos, L.M.B.C.; Marques, J.M.G. On the comparison of ten pitch trim strategies for cruise drag minimization. J. Aerosp. Eng. Mech. 2021, in press. [Google Scholar]
Type | Mode | Frequency | Damping |
---|---|---|---|
Longitudinal | Phugoid | ||
Short period | |||
Lateral | Dutch roll | ||
Helical |
Mode | Natural Frequency | Damping Ratio |
---|---|---|
Decoupled | ||
Weakly coupled | ||
Condition | ||
Strongly coupled | ||
Condition |
Design | Flight Condition | Mass | Speed | Altitude | Flaps | c.g. |
---|---|---|---|---|---|---|
BWB | Case | ×103 kg | kts | ×103 ft | degrees | % mac |
1 | 1a | 550 | 176 | 0 | 15/25 | 25 |
1b | 550 | 176 | 0 | 15/25 | 35 | |
1c | 550 | 200 | 0 | 15/25 | 25 | |
1d | 550 | 200 | 0 | 15/25 | 35 | |
1e | 670 | M = 0.85 | 39 | clean | 35 | |
1f | 670 | M = 0.85 | 39 | clean | 39 | |
1g | 760 | M = 0.85 | 35 | clean | 35 | |
1h | 760 | M = 0.85 | 35 | clean | 39 | |
1i | 700 | 300 | 0 | clean | 35 | |
1j | 700 | M = 0.70 | 30 | clean | 39 | |
2 | 2a | 550 | 176 | 0 | clean | 35 |
2b | 550 | 176 | 0 | clean | 39 | |
2c | 550 | 200 | 0 | clean | 35 | |
2d | 550 | 200 | 0 | clean | 39 | |
2e | 670 | M = 0.85 | 39 | clean | 35 | |
2f | 670 | M = 0.85 | 39 | clean | 39 | |
2g | 760 | M = 0.85 | 35 | clean | 35 | |
2h | 760 | M = 0.85 | 35 | clean | 39 |
[m/s] | [m/s] | [rad/s] | [rad] | [m/s] | [rad/s] | [rad/s] | [rad] | |
---|---|---|---|---|---|---|---|---|
[m/s2] | −2.10 × 10−4 | 1.51 × 10−1 | −8.91 | −9.94 × 10−1 | 1.13 × 10−7 | 0 | 0 | 0 |
[m/s2] | −1.54 × 10−1 | −6.55 × 10−1 | 8.05 × 101 | 1.10 × 10−1 | −1.24 × 10−6 | 0 | 0 | 0 |
[rad/s2] | 5.98 × 10−4 | −7.16 × 10−3 | −6.13 × 10−1 | 0 | −1.07 × 10−9 | −4.93 × 10−5 | 4.93 × 10−5 | 0 |
[rad/s] | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 |
[m/s2] | 4.66 × 10−17 | 4.66 × 10−17 | 0 | 0 | −5.27 × 10−2 | 1.11 × 101 | −8.81 × 101 | 9.94 × 10−1 |
[rad/s2] | −1.34 × 10−16 | −1.19 × 10−17 | 0 | 0 | −6.68 × 10−3 | −9.07 × 10−1 | 2.30 × 10−1 | 0 |
[rad/s2] | −5.06 × 10−15 | −2.03 × 10−19 | 0 | 0 | 2.68 × 10−3 | −1.85 × 10−1 | −1.12 × 10−1 | 0 |
[rad/s] | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.11 × 10−1 | 0 |
Type | Mode | Frequency Damping | De-Coupled | Weakly Coupled Approximation | Fully Coupled |
---|---|---|---|---|---|
Longitudinal | Phugoid | 0.201769 0.114 | 0.202 0.114 | 0.201968 0.113596 | |
Short period | /0.124521 /1.7013 | /0.124 /−1.700 | /0.124266 /−1.70135 | ||
Lateral | Dutch roll | 0.845291 0.0595375 | 0.845291 0.0595 | 0.845291 0.0595375 | |
Helical | /−4.28162 × 10−6 /−1.13662 | /−4.28 × 10−6 /−1.137 | /−4.28162 × 10−6 /−1.13662 |
[m/s] | [m/s] | [m/s] | [rad/s] | [rad/s] | [rad/s] | [rad] | [rad] | [rad] | |
---|---|---|---|---|---|---|---|---|---|
[m/s2] | −2.10 × 10−4 | 1.13 × 10−7 | 1.51 × 10−1 | 0 | −8.91 | 0 | 0 | −9.94 × 10−1 | 0 |
[m/s2] | 4.66 × 10−17 | −5.27 × 10−2 | 4.66 × 10−17 | 1.11 × 101 | 0 | −8.81 × 101 | 9.94 × 10−1 | 0 | 0 |
[m/s2] | −1.54 × 10−1 | −1.24 × 10−6 | −6.55 × 10−1 | 0 | 8.05 × 101 | 0 | 0 | 1.10 × 10−1 | 0 |
[rad/s2] | −1.34 × 10−16 | −6.68 × 10−3 | −1.19 × 10−17 | −9.07 × 10−1 | 0 | 2.30 × 10−1 | 0 | 0 | 0 |
[rad/s2] | 5.98 × 10−4 | −1.07 × 10−9 | −7.16 × 10−3 | −4.93 × 10−5 | −6.13 × 10−1 | 4.93 × 10−5 | 0 | 0 | 0 |
[rad/s2] | −5.06 × 10−15 | 2.68 × 10−3 | −2.03 × 10−19 | −1.85 × 10−1 | 0 | −1.12 × 10−1 | 0 | 0 | 0 |
[rad/s] | 0 | 0 | 0 | 1.00 | 0 | 1.11 × 10−1 | 0 | 0 | 0 |
[rad/s] | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 |
[rad/s] | 0 | 0 | 0 | 0 | 0 | 1.01 | 0 | 0 | 0 |
Stability Mode | Longitudinal | Lateral | |||
---|---|---|---|---|---|
Phugoid | Short-Period | Dutch Roll | Roll | Spiral | |
or | or | or | |||
1a | −0.102 ± i0.0374 | −0.624 ± i0.768 | −0.0759 ± i0.602 | −0.920 | −0.000397 |
1b | −0.000684 ± i0.0719 | −1.031 / 0.268 | −0.0605 ± i0.522 | −0.853 | −0.000382 |
1c | −0.00816 ± i0.0332 | −0.720 ± i0.877 | −0.0916 ± i0.657 | −1.065 | −0.000205 |
1d | −0.000146 ± i0.0641 | −1.495 / 0.308 | −0.0738 ± i0.576 | −0.985 | −0.000112 |
1e | −0.0727 ± i0.186 | −1.503 / 0.138 | −0.0458 ± i0.774 | −0.958 | −0.0000104 |
1f | −0.00150 ± i0.0695 | −2.172 / 0.804 | −0.0426 ± i0.748 | −0.956 | −0.0000110 |
1g | −0.114 ± i0.202 | −1.701 / 0.124 | −0.0595 ± i0.845 | −1.136 | −0.00000428 |
1h | 0.00227 ± i0.0771 | −2.429 / 0.798 | −0.0545 ± i0.819 | −1.136 | −0.0000258 |
1i | −0.00479 ± i0.0332 | −1.031 ± i1.346 | −0.141 ± i1.000 | −1.743 | −0.000181 |
1j | −0.0037 ± i0.0208 | −0.576 ± i1.181 | −0.0587 ± i0.848 | −1.087 | −0.000296 |
2a | −0.0130 ± i0.0386 | −0.652 ± i0.995 | −0.0305 ± i0.636 | −0.873 | −0.00226 |
2b | −0.0286 /−0.00306 | −0.555 ± i0.281 | −0.0267 ± i0.511 | −0.874 | 0.00160 |
2c | −0.00982 ± i0.0352 | −0.751 ± i1.131 | −0.0359 ± i0.632 | −1.010 | −0.00160 |
2d | −0.0241 /0.000679 | −0.642 ± i0.299 | −0.0325 ± i0.519 | −1.009 | 0.00112 |
2e | −0.00344 ± i0.00246 | −0.567 ± i1.051 | −0.00800 ± i0.644 | −1.193 | 0.000336 |
2f | −0.00419 ± i0.0155 | −0.706 ± i1.867 | −0.00271 ± i0.746 | −1.211 | 0.000471 |
2g | −0.00566 ± i0.00194 | −0.677 ± i1.142 | −0.0173 ± i0.700 | −1.407 | 0.000316 |
2h | −0.00194 /0.00459 | −0.841 ± i2.028 | −0.0144 ± i0.808 | −1.421 | 0.000442 |
Eigenvalue | Quantity | Symbol = Value | |
---|---|---|---|
Complex | Oscillation frequency | ||
Real part | Positive | Damping ratio | |
Negative | Time constant | ||
Time to double amplitude |
Stability | Longitudinal | Lateral | CAP | ||||||
---|---|---|---|---|---|---|---|---|---|
Mode | Phugoid | Short-Period | Dutch Roll | Roll | Spiral | ||||
Parameter | |||||||||
Units | s−1 | −/s−1 | s−1 | −/s−1 | s−1 | -/s−1 | s−1 | s−1 | s−2 |
1a | 0.109 | 0.936 | 0.990 | 0.630 | 0.607 | 0.125 | 0.920 | 0.000397 | 0.0939 |
1b | 0.0719 | 0.00651 | /1.301 | /0.208 | 0.525 | 0.115 | 0.853 | 0.000382 | 0.0114 |
1c | 0.0342 | 0.239 | 1.135 | 0.647 | 0.663 | 0.138 | 1.065 | 0.000205 | 0.122 |
1d | 0.0641 | 0.00228 | /1.495 | /0.308 | 0.581 | 0.127 | 0.985 | 0.000112 | 0.0151 |
1e | 0.200 | 0.363 | /1.503 | /0.138 | 0.775 | 0.0591 | 0.958 | −0.0000104 | 0.00303 |
1f | 0.0695 | 0.0216 | /2.172 | /0.804 | 0.749 | 0.0569 | 0.956 | 0.0000110 | 0.103 |
1g | 0.240 | 0.475 | /1.701 | /0.124 | 0.847 | 0.0702 | 1.136 | 0.00000428 | 0.00245 |
1h | 0.0771 | −0.0295 | /2.429 | /0.798 | 0.820 | 0.0605 | 1.136 | 0.0000258 | 0.101 |
1i | 0.0335 | 0.143 | 1.695 | 0.608 | 1.010 | 0.140 | 1.743 | 0.000181 | 0.288 |
1j | 0.0211 | 0.175 | 1.314 | 0.438 | 0.850 | 0.0691 | 1.087 | 0.000296 | 0.222 |
2a | 0.411 | 0.0316 | 1.189 | 0.548 | 0.637 | 0.0479 | 0.873 | 0.000226 | 0.158 |
2b | /0.0286 | /0.00300 | 0.622 | 0.892 | 0.512 | 0.0521 | 0.874 | −0.00160 | 0.0126 |
2c | 0.0364 | 0.270 | 1.356 | 0.554 | 0.633 | 0.0567 | 1.01 | 0.00160 | 0.204 |
2d | /0.024 | /−0.000679 | 0.708 | 0.907 | 0.520 | 0.0625 | 1.009 | −0.00112 | 0.0142 |
2e | 0.0161 | 0.214 | 1.194 | 0.475 | 0.746 | 0.0125 | 1.211 | −0.000471 | 0.176 |
2f | 0.00422 | 0.993 | 1.996 | 0.354 | 0.644 | 0.00363 | 1.193 | −0.000336 | 0.555 |
2g | 0.0169 | 0.335 | 1.328 | 0.510 | 0.700 | 0.0247 | 1.421 | −0.000442 | 0.208 |
2h | /0.0194 | /0.00459 | 2.195 | 0.383 | 0.808 | 0.0178 | 1.407 | −0.000316 | 0.655 |
Mode | Level 1 | Level 2 | Level 3 | |
---|---|---|---|---|
Phugoid | ζp > 0.04 | ζp > 0 | Tp > 55 s | |
Short period | A + C | 0.35 < ζs < 1.30 | 0.25 < ζs < 2.30 | ζs > 0.15 |
B | 0.30 < ζs < 2.00 | 0.20 < ζs < 2.00 | ζs > 0.15 | |
Dutch Roll | A: ζd > 0.19 B+C: ζd > 0.08 | ζd > 0.02 | ζs > 0.02 | |
A: Ωdζd > 0.35 rad/s B+C: Ωdζd > 0.15 rad/s | Ωdζd > 0.05 rad/s | - | ||
Ωd > 0.40 rad/s | Ωd > 0.40 rad/s | Ωd > 0.40 rad/s | ||
Spiral Mode | Ts > 20 s | Ts > 12 s | Ts > 4 s | |
Roll Mode | τr < 1.4 s | τr < 3.0 s | τr < 10 s |
Mode | Phugoid | Short-Period | Dutch Roll | Roll | Spiral | CAP |
---|---|---|---|---|---|---|
1a | 1 | 1 | 2 | 1 | 1 | 2 |
1b | 2 | − | 2 | 1 | 1 | - |
1c | 1 | 1 | 2 | 1 | 1 | 2 |
1d | 2 | − | 2 | 1 | 1 | - |
1e | 1 | − | 3 | 1 | 1 | - |
1f | 2 | − | 3 | 1 | 1 | - |
1g | 1 | − | 2 | 1 | 1 | - |
1h | 3 | − | 2 | 1 | 1 | - |
1i | 1 | 1 | 2 | 1 | 1 | 1 |
1j | 1 | 1 | 2 | 1 | 1 | 1 |
2a | 2 | 1 | 3 | 1 | 1 | 1 |
2b | 3 | 1 | 3 | 1 | 1 | 3 |
2c | 1 | 1 | 3 | 1 | 1 | 1 |
2d | 3 | 1 | 3 | 1 | 1 | 3 |
2e | 1 | 1 | − | 1 | 1 | 1 |
2f | 1 | 1 | − | 1 | 1 | 1 |
2g | 1 | 1 | 3 | 1 | 1 | 1 |
2h | 3 | 1 | − | 1 | 1 | 1 |
Design | Case | Flight Condition | Manouver Point | ||||||
---|---|---|---|---|---|---|---|---|---|
Speed/ Mach | Altitude | Weight | Longitudinal | Lateral | |||||
kt | ×103 ft | ×103 kg | Range of Values | Estimated Value | Range of Values | Estimated Value | |||
BWB 1 | 1a/b | Minimum speed | 176 | 0 | 550 | 0.25 < xs < 0.35 | xs = 0.320 | xr > 0.35 | xr = 0.743 |
1c/d | approach | 200 | 0 | 550 | 0.25 < xs < 0.35 | xs = 0.320 | xr > 0.35 | xr = 0.779 | |
1e/f | Initial cruise | M = 0.85 | 39 | 670 | xs < 0.35 | xs = 0.345 | xr > 0.39 | xr = 0.992 | |
1g/h | Final cruise | M = 0.85 | 35 | 760 | xs < 0.35 | xs = 0.342 | xr > 0.39 | xr = 0.826 | |
BWB 2 | 2a/b | Minimum speed | 176 | 0 | 550 | xs > 0.39 | xs = 0.402 | xr > 0.39 | xr = 0.671 |
2c/d | approach | 200 | 0 | 550 | 0.35 < xs < 0.39 | xs = 0.390 | xr > 0.39 | xr = 0.772 | |
2e/f | Initial cruise | M = 0.85 | 39 | 670 | xs > 0.39 | xs = 0.553 | xr < 0.35 | xr = 0.330 | |
2g/h | Final cruise | M = 0.85 | 35 | 760 | xs > 0.39 | xs = 0.419 | xr < 0.35 | xr = 0.151 |
Manoeuver point | First kind | Second kind |
---|---|---|
Illustration | Figure 10 | Figure 11 |
Eigenvalue | ||
At manouever point | ||
Condition | ||
Mode | oscillatory | non-oscillatory |
Example | BWB 1 | BWB 2 | |
---|---|---|---|
Fuselage | Length Width | Long Narrow | Short Wide |
Equal Fineless | Thickness Volume | Thick High | Thin Low |
Tail | Moment arm Elevator area | Long Small | Short Large |
Passenger motion | Pitch Roll | Large Small | Small Large |
Evacuation | Easy | Difficult | |
Conclusion | Conservative | Radical | |
Risk | Lower | Higher |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, L.M.B.C.; Marques, J.M.G. On the Handling Qualities of Two Flying Wing Aircraft Configurations. Aerospace 2021, 8, 77. https://doi.org/10.3390/aerospace8030077
Campos LMBC, Marques JMG. On the Handling Qualities of Two Flying Wing Aircraft Configurations. Aerospace. 2021; 8(3):77. https://doi.org/10.3390/aerospace8030077
Chicago/Turabian StyleCampos, Luís M. B. C., and Joaquim M. G. Marques. 2021. "On the Handling Qualities of Two Flying Wing Aircraft Configurations" Aerospace 8, no. 3: 77. https://doi.org/10.3390/aerospace8030077
APA StyleCampos, L. M. B. C., & Marques, J. M. G. (2021). On the Handling Qualities of Two Flying Wing Aircraft Configurations. Aerospace, 8(3), 77. https://doi.org/10.3390/aerospace8030077