Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Fidelity Modules
- EPM Structural Model
- Low-Fidelity Aerodynamics
- Optimization Framework
2.1.1. EPM Structural Model
- Skins:
- Spar Webs:
- Spar Caps:
- Rib Webs:
- Rib Caps:
2.1.2. Low-Fidelity Aerodynamics
2.1.3. Optimization Framework
- Extraction of nodal displacements.
- Calculation of the membrane and curvature strains.
- Calculation of strains at various wing cross-sections via plate kinematic equations.
- Calculation of forces and moments per unit length.
- Given the forces and moments, the material strength values, and the maximum stress criterion, calculate the failure indices (FI) for each ply and conduct a First-Ply-Failure (FPF) analysis.
2.2. High-Fidelity Modules
2.2.1. Steady (Undeformed Body) Aerodynamic Loads Module
- High-Fidelity Finite Volume CFD Solver.
- High-Fidelity or Medium Fidelity FEA solver.
- Load Interpolation Module using General Grid Interface (GGI) method.
2.2.2. Formulation of the Aeroelastic Problem and Order Reduction
- The oscillation frequency approaches zero and the maxima of successive windows show an ascending pattern in any mode, indicating static divergence. This criterion exploits the fact that as divergence progresses the motion becomes non-oscillatory and the frequency approaches zero.
- The oscillation frequency approaches zero and the maxima of successive windows converge to a constant finite value within a specific predefined tolerance in all modes. This indicates that a static equilibrium position is reached.
- The oscillation frequency does not approach zero, but the system oscillates near a specific single frequency in all modes. The maxima of successive windows show an ascending pattern in any mode. Such behavior is indicative of flutter.
3. Results and Discussion
3.1. Benchmark Solution
3.2. Main Case Study
3.3. Low-Fidelity Module
3.4. High-Fidelity Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AoA | Angle of Attack |
CFD | Computational Fluid Dynamics |
CRM | Common Research Model |
EPM | Equivalent Plate Method |
FEA | Finite Element Analysis |
ROM | Reduced Order Model |
Appendix A. EPM Validation Test Case
EPM | NASTRAN | |||
---|---|---|---|---|
Element Type | Nr of Elements | Element Type | Nr of Elements | |
Skins | CQUAD4 | 16,932 | ||
Spar, Rib Webs | QUAD-9 | 675 | 5448 | |
Spar, Rib Caps | CROD | 1888 | ||
Associated DOF’ | 14,105 | 136,168 |
Mode Nr | NASTRAN Value, Hz | Error, % | |
---|---|---|---|
1 | 16.12 | 16.521 | −2.492 |
2 | 61.009 | 61.603 | −0.973 |
3 | 98.908 | 94.546 | 4.409 |
4 | 139.348 | 140.791 | −1.036 |
5 | 160.549 | 166.408 | −3.649 |
6 | 245.620 | 250.112 | −1.828 |
7 | 311.941 | 311.121 | 0.262 |
8 | 325.066 | 326.562 | −0.460 |
9 | 373.481 | 384.695 | −3.003 |
10 | 468.341 | 483.222 | −3.177 |
Total Mass, kg | 250.765 | 244.4 | 2.539 |
Appendix B. Flowchart of the Developed Optimization Framework
Appendix C. Benchmark Solution Tolerance Value Study
Constraint Tolerance Value | |||||||
Optimized Volume (cm) | 63,880 | 64,419 | 64,562 | 64,577 | 64,578 | 64,578 | 64,578 |
Appendix D. High-Fidelity CFD Grid Convergence Study
Lift (N) | Drag (N) | Grid Convergence Indexes | ||
---|---|---|---|---|
Mesh 1 ( Cells) | 3.003 | 1.306 | GCI (lift) | GCI (drag) |
Mesh 2 ( Cells) | 3.027 | 1.295 | 8.68 | 5.98 |
Mesh 3 ( Cells) | 3.016 | 1.264 | 4.07 | 1.69 |
References
- Kundu, A.K. Aircraft Design; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Shirk, M.H.; Hertz, T.J.; Weisshaar, T.A. Aeroelastic tailoring—Theory, practice, and promise. J. Aircr. 1986, 23, 6–18. [Google Scholar] [CrossRef]
- Miki, M.; Sugiyama, Y. Optimum Design of Laminated Composite Plates Using Lamination Parameters. AIAA J. 1993, 31, 921–922. [Google Scholar] [CrossRef]
- Fukunaga, H.; Sekine, H.; Sato, M. Optimal Design of Symmetric Laminated Plates for Fundamental Frequency. J. Sound Vib. 1994, 171, 219–229. [Google Scholar] [CrossRef]
- Liu, B.; Haftka, R.; Trompette, P. Maximization of buckling loads of composite panels using flexural lamination parameters. Struct. Multidiscip. Optim. 2004, 26, 28–36. [Google Scholar] [CrossRef]
- Setoodeh, S.; Abdalla, M.M.; Gürdal, Z. Design of variable–stiffness laminates using lamination parameters. Compos. Part B Eng. 2006, 37, 301–309. [Google Scholar] [CrossRef]
- Thuwis, G.A.A.; Breuker, R.D.; Abdalla, M.M.; Gürdal, Z. Aeroelastic tailoring using lamination parameters. Struct. Multidiscip. Optim. 2009, 41, 637–646. [Google Scholar] [CrossRef] [Green Version]
- IJsselmuiden, S.T.; Abdalla, M.M.; Gurdal, Z. Optimization of Variable-Stiffness Panels for Maximum Buckling Load Using Lamination Parameters. AIAA J. 2010, 48, 134–143. [Google Scholar] [CrossRef]
- Dillinger, J.K.S.; Klimmek, T.; Abdalla, M.M.; Gürdal, Z. Stiffness Optimization of Composite Wings with Aeroelastic Constraints. J. Aircr. 2013, 50, 1159–1168. [Google Scholar] [CrossRef]
- Macquart, T.; Maes, V.; Bordogna, M.T.; Pirrera, A.; Weaver, P. Optimisation of composite structures—Enforcing the feasibility of lamination parameter constraints with computationally-efficient maps. Compos. Struct. 2018, 192, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, M.T.; Lancelot, P.; Bettebghor, D.; Breuker, R.D. Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviation. Struct. Multidiscip. Optim. 2020, 61, 2193–2216. [Google Scholar] [CrossRef] [Green Version]
- Giles, G.L. Equivalent plate analysis of aircraft wing box structures with general planform geometry. J. Aircr. 1986, 23, 859–864. [Google Scholar] [CrossRef]
- Giles, G.L. Further generalization of an equivalent plate representation for aircraft structural analysis. J. Aircr. 1989, 26, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Giles, G.L. Equivalent plate modeling for conceptual design of aircraft wing structures. In Proceedings of the Aircraft Engineering, Technology, and Operations Congress, Los Angeles, CA, USA, 19–21 September 1995; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1995. [Google Scholar] [CrossRef] [Green Version]
- Livne, E.; Schmit, L.A.; Friedmann, P.P. Towards integrated multidisciplinary synthesis of actively controlled fiber composite wings. J. Aircr. 1990, 27, 979–992. [Google Scholar] [CrossRef]
- Livne, E. Equivalent plate structural modeling for wing shape optimization including transverse shear. AIAA J. 1994, 32, 1278–1288. [Google Scholar] [CrossRef]
- Livne, E.; Navarro, I. Nonlinear Equivalent Plate Modeling of Wing-Box Structures. J. Aircr. 1999, 36, 851–865. [Google Scholar] [CrossRef]
- Kapania, R.K.; Liu, Y. Static and Vibration Analyses of General Wing Structures Using Equivalent-Plate Models. AIAA J. 2000, 38, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, T.; Eldred, L. Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, T.; Tsai, F. Static and Dynamic Structural Response of an Aircraft Wing with Damage Using Equivalent Plate Analysis. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, USA, 7–10 April 2008; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, T. Frequencies and Flutter Speed Estimation for Damaged Aircraft Wing Using Scaled Equivalent Plate Analysis. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Na, Y.; Shin, S. Equivalent-Plate Analysis for a Composite Wing with a Control Surface. J. Aircr. 2013, 50, 853–862. [Google Scholar] [CrossRef]
- Henson, M.C.; Wang, B. Efficient Methods for Design and Analysis of Tow Steered Wing Structures. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- Triplett, W.E. Aeroelastic Tailoring Studies in Fighter Aircraft Design. J. Aircr. 1980, 17, 508–513. [Google Scholar] [CrossRef]
- Love, M.; Bohlman, J. Aeroelastic Tailoring Studies in Fighter Aircraft Design; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 1989.
- Haftka, R.T. Automated Procedure for Design of Wing Structures to Satisfy Strength and Flutter Requirements; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 1973.
- Haftka, R.T. Optimization of flexible wing structures subject to strength and induced drag constraints. AIAA J. 1977, 15, 1101–1106. [Google Scholar] [CrossRef]
- Grossman, B.; Gurdal, Z.; Strauch, G.J.; Eppard, W.M.; Haftka, R.T. Integrated aerodynamic/structural design of a sailplane wing. J. Aircr. 1988, 25, 855–860. [Google Scholar] [CrossRef]
- Grossman, B.; Haftka, R.T.; Kao, P.J.; Polen, D.M.; Rais-Rohani, M.; Sobieszczanski-Sobieski, J. Integrated aerodynamic-structural design of a transport wing. J. Aircr. 1990, 27, 1050–1056. [Google Scholar] [CrossRef]
- Dababneh, O.; Kipouros, T.; Whidborne, J. Application of an Efficient Gradient-Based Optimization Strategy for Aircraft Wing Structures. Aerospace 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Raveh, D.E. Computational-fluid-dynamics-based aeroelastic analysis and structural design optimization—A researcher’s perspective. Comput. Methods Appl. Mech. Eng. 2005, 194, 3453–3471. [Google Scholar] [CrossRef]
- Raveh, D.E.; Levy, Y.; Karpel, M. Structural Optimization Using Computational Aerodynamics. AIAA J. 2000, 38, 1974–1982. [Google Scholar] [CrossRef]
- Cavagna, L.; Quaranta, G.; Mantegazza, P. Application of Navier–Stokes simulations for aeroelastic stability assessment in transonic regime. Comput. Struct. 2007, 85, 818–832. [Google Scholar] [CrossRef]
- McDaniel, D.R.; Cummings, R.M.; Bergeron, K.; Morton, S.A.; Dean, J.P. Comparisons of computational fluid dynamics solutions of static and manoeuvring fighter aircraft with flight test data. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 323–340. [Google Scholar] [CrossRef] [Green Version]
- Guruswamy, G.P.; Obayashi, S. Study on the Use of High-Fidelity Methods in Aeroelastic Optimization. J. Aircr. 2004, 41, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Wilke, G. Variable Fidelity Optimization of Required Power of Rotor Blades: Investigation of Aerodynamic Models and their Application. In Proceedings of the 38th European Rotorcraft Forum, Amsterdam, The Netherlands, 4–7 September 2012. [Google Scholar]
- Crovato, A.; Almeida, H.S.; Vio, G.; Silva, G.H.; Prado, A.P.; Breviglieri, C.; Guner, H.; Cabral, P.H.; Boman, R.; Terrapon, V.E.; et al. Effect of Levels of Fidelity on Steady Aerodynamic and Static Aeroelastic Computations. Aerospace 2020, 7, 42. [Google Scholar] [CrossRef]
- Afonso, F.; Vale, J.; Oliveira, É.; Lau, F.; Suleman, A. A review on non-linear aeroelasticity of high aspect-ratio wings. Prog. Aerosp. Sci. 2017, 89, 40–57. [Google Scholar] [CrossRef]
- Grasmeyer, J.; Naghshineh-Pour, A.; Tetrault, P.A.; Grossman, B.; Haftka, R.; Kapania, R.; Mason, W.; Schetz, J. Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft with Tip-Mounted Engines; Multidisciplinary Analysis and Design Center for Advanced Vehicles: Blacksburg, VA, USA, 1998. [Google Scholar]
- Gern, F.; Gundlach, J.; Ko, A.; Naghshineh-Pour, A.; Sulaeman, E.; Tetrault, P.A.; Grossman, B.; Kapania, R.; Mason, W.; Schetz, J.; et al. Multidisciplinary Design Optimization of a Transonic Commercial Transport with a Strut-Braced Wing; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1999. [Google Scholar] [CrossRef]
- Variyar, A.; Economon, T.D.; Alonso, J.J. Multifidelity Conceptual Design and Optimization of Strut-Braced Wing Aircraft using Physics Based Methods. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Alonso, J.J. High-Fidelity Structural Design and Optimization of Blended-Wing-Body Transports. In Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Smith, M.; Patil, M.; Hodges, D. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect ratio wings. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar] [CrossRef]
- Liem, R.P.; Kenway, G.K.W.; Martins, J.R.R.A. Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization. AIAA J. 2015, 53, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Haar, D.; Brezillon, J. Engine integration based on multi-disciplinary optimisation technique. CEAS Aeronaut. J. 2012, 3, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ronzheimer, A.; Natterer, F.J.; Brezillon, J. Aircraft Wing Optimization Using High Fidelity Closely Coupled CFD and CSM Methods. In Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Wort, TX, USA, 13–15 September 2010. [Google Scholar] [CrossRef]
- Garrigues, E. A Review of Industrial Aeroelasticity Practices at Dassault Aviation for Military Aircraft and Business Jets. Aerosp. Lab. 2018, 1–34. [Google Scholar] [CrossRef]
- Kennedy, G.; Martins, J. A parallel aerostructural optimization framework for aircraft design studies. Struct. Multidiscip. Optim. 2014, 50, 1079–1101. [Google Scholar] [CrossRef]
- Mieloszyk, J.; Goetzendorf-Grabowski, T. Introduction of full flight dynamic stability constraints in aircraft multidisciplinary optimization. Aerosp. Sci. Technol. 2017, 68, 252–260. [Google Scholar] [CrossRef]
- Conlan-Smith, C.; Schousboe Andreasen, C. Aeroelastic Optimization of Aircraft Wings Using a Coupled Three-Dimensional Panel-Beam Model. AIAA J. 2021, 59, 1374–1386. [Google Scholar] [CrossRef]
- Mitrotta, F.M.A.; Rajpal, D.; Sodja, J.; Breuker, R.D. Multi-Fidelity Design of an Aeroelastically Tailored Composite Wing for Dynamic Wind-Tunnel Testing. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Alonso, J.J.; Kroo, I.M. Two-Level Multifidelity Design Optimization Studies for Supersonic Jets. J. Aircr. 2009, 46, 776–790. [Google Scholar] [CrossRef]
- Ghoreyshi, M.; Jirasek, A.; Cummings, R. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics. Prog. Aerosp. Sci. 2014, 71, 167–217. [Google Scholar] [CrossRef] [Green Version]
- Walton, S.; Hassan, O.; Morgan, K. Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions. Appl. Math. Model. 2013, 37, 8930–8945. [Google Scholar] [CrossRef]
- Silva, W.A. AEROM: NASA’s Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software. Aerospace 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannarino, A.; Mantegazza, P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks. J. Fluids Struct. 2014, 48. [Google Scholar] [CrossRef]
- Piperni, P.; DeBlois, A.; Henderson, R. Development of a Multilevel Multidisciplinary-Optimization Capability for an Industrial Environment. AIAA J. 2013, 51, 2335–2352. [Google Scholar] [CrossRef]
- Dillinger, J.K.S.; Abdalla, M.M.; Meddaikar, Y.M.; Klimmek, T. Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads. CEAS Aeronaut. J. 2019, 10, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- H2020 Clean Sky 2 GRETEL Project. Available online: https://www.cleansky2gretel.eu (accessed on 28 November 2021).
- Vassberg, J.; Dehaan, M.; Rivers, M.; Wahls, R. Development of a Common Research Model for Applied CFD Validation Studies. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 18–21 August 2008; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.M. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Katz, J.; Plotkin, A. Low-Speed Aerodynamics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Melin, T. A Vortex Lattice MATLAB Implementation for Linear Aerodynamic Wing Applications. Master’s Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2000. [Google Scholar]
- Brooks, T.R.; Kenway, G.K.; Martins, J.R.R.A. Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.R.R.A.; Kenway, G.K.W.; Burdette, D.; Jonsson, E.; Stanford, B.K.; Kennedy, G.J. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations; Technical Report; NASA: Washington, DC, USA, 2017.
- Kilimtzidis, S.; Kotzakolios, A.; Kostopoulos, V. Efficient Structural Optimisation of Composite Materials Aircraft Wings. Compos. Struct. 2021. under review. [Google Scholar]
- Kassapoglou, C. Design and Analysis of Composite Structures; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Liu, Q.; Mulani, S.B.; Kapania, R.K. Global/Local Multidisciplinary Design Optimization of Subsonic Wing. In Proceedings of the 10th AIAA Multidisciplinary Design Optimization Conference, National Harbor, MD, USA, 13–17 January 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Starnes, J.H.; Haftka, R.T. Preliminary Design of Composite Wings for Buckling, Strength, and Displacement Constraints. J. Aircr. 1979, 16, 564–570. [Google Scholar] [CrossRef]
- Kreisselmeier, G.; Steinhauser, R. Systematic Control Design by Optimizing a Vector Performance Index. IFAC Proc. Vol. 1979, 12, 113–117. [Google Scholar] [CrossRef]
- Poon, N.M.K.; Martins, J.R.R.A. An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct. Multidiscip. Optim. 2006, 34, 61–73. [Google Scholar] [CrossRef]
- Lambe, A.B.; Kennedy, G.J.; Martins, J.R.R.A. An evaluation of constraint aggregation strategies for wing box mass minimization. Struct. Multidiscip. Optim. 2016, 55, 257–277. [Google Scholar] [CrossRef]
- Lambe, A.B.; Martins, J.R.R.A. Matrix-free aerostructural optimization of aircraft wings. Struct. Multidiscip. Optim. 2015, 53, 589–603. [Google Scholar] [CrossRef]
- Suh, P.M. EZASE Easy Aeroelasticity: A Tool to Simulate Aircraft Wing Geometry; NASA: Washington, DC, USA, 2011.
- Schlüter, M.; Erb, S.O.; Gerdts, M.; Kemble, S.; Rückmann, J.J. MIDACO on MINLP space applications. Adv. Space Res. 2013, 51, 1116–1131. [Google Scholar] [CrossRef]
- Schlüter, M.; Egea, J.A.; Banga, J.R. Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 2009, 36, 2217–2229. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, M.; Gerdts, M. The oracle penalty method. J. Glob. Optim. 2009, 47, 293–325. [Google Scholar] [CrossRef]
- Joel, H.; Ferziger, M.P. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Gemany, 2002. [Google Scholar] [CrossRef]
- Fletcher, C. Computational Techniques for Fluid Dynamics 2; Springer: Berlin/Heidelberg, Gemany, 1991. [Google Scholar] [CrossRef]
- Demirdzic, I.; Lilek, Z.; Peric, M. A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 1993, 16, 1029–1050. [Google Scholar] [CrossRef]
- Beaudoin, M.; Jasak, H. Development of a Generalized Grid Interface for Turbomachinery simulations with OpenFOAM. In Proceedings of the Open Source CFD International Conference 2008, Berlin, Germany, 4–5 December 2008. [Google Scholar]
- Jasak, H. Dynamic Mesh Handling in OpenFOAM. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar] [CrossRef] [Green Version]
- Kassiotis, C. Which Strategy to Move the Mesh in the Computational Fluid Dynamic Code OpenFOAM (2008); Chalmers TH Technical Report for OpenFOAM: Gothenburg, Sweden, 2008. [Google Scholar]
- Silva, W. Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities. Nonlinear Dyn. 2005, 39, 25–62. [Google Scholar] [CrossRef]
- Jirasek, A.; Cummings, R. Application of Volterra Functions to X-31 Aircraft Model Motion. In Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009. [Google Scholar] [CrossRef]
- Thanedar, P.B.; Vanderplaats, G.N. Survey of Discrete Variable Optimization for Structural Design. J. Struct. Eng. 1995, 121, 301–306. [Google Scholar] [CrossRef]
- Jutte, C.V.; Stanford, B.K.; Wieseman, C.D. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring; Technical Report; NASA: Washington, DC, USA, 2015.
- Marlett, K. HEXCEL 8552 IM7 Unidirectional Prepreg 190 gsm 35% RC Qualification Statistical Analysis Report; Rept. NCP-RP-2009-028 Rev B; Technical Report; National Institute for Aviation Research: Wichita, KS, USA, 2011. [Google Scholar]
Condition | Lift Constraint | Mach | Altitude (m) |
---|---|---|---|
2.5G maneuver | 2.5 · MTOW | 0.64 | 0 |
Variable | Lower Bound | Upper Bound | Type |
---|---|---|---|
Ply Count, | 1 | 20 | Integer |
Ply Count, | 1 | 20 | Integer |
Ply Count, (,) | 1 | 20 | Integer |
Spar/Rib Caps Ply Count | 1 | 10 | Integer |
Spar/Rib Caps Depth, mm | 50 | 100 | Integer |
Objective Function | Minimize Structural Mass | |
---|---|---|
under the constraints | ||
Constraint Type | Limit Value | |
Maximum Deflection | ≤0.15 · Span | |
Tip Torsion Angle | ≤8 | |
First Eigenfrequency | ≤1 Hz | |
Flutter Speed | ≤1.2 · Dive speed | |
KS(FI), Upper Skin | ≤1 | |
KS(FI), Lower Skin | ≤1 | |
KS(FI), Spar Caps | ≤1 | |
KS(FI), Spar Webs | ≤1 |
Run | Iterations | Tolerance | FOCUS Parameter | Starting Point |
---|---|---|---|---|
1 | 200 | 0.1 | 0 | from scratch |
2 | 100 | 0.01 | 10 | previous solution |
3 | 50 | 0.001 | 100 | previous solution |
4 | 50 | 0.001 | 1000 | previous solution |
Design Variable | Continuous Optimum | Precise Discrete Optimum | Linear Approximate Discrete Optimum | Conservative Approximate Discrete Optimum | MIDACO |
---|---|---|---|---|---|
B1 (cm) | 3.06 | 3 | 3 | 3 | 3 |
B2 (cm) | 2.81 | 3.1 | 3.1 | 3.1 | 3.1 |
B3 (cm) | 2.52 | 2.6 | 2.6 | 2.6 | 2.6 |
B4 (cm) | 2.2 | 2.276 | 2.262 | 2.279 | 2.2834 |
B5 (cm) | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
H1 (cm) | 61.16 | 60 | 60 | 60 | 60 |
H2 (cm) | 56.24 | 55 | 55 | 55 | 55 |
H3 (cm) | 50.47 | 50 | 50 | 50 | 50 |
H4 (cm) | 44.09 | 45.528 | 45.233 | 45.553 | 45.598 |
H5 (cm) | 35.03 | 34.995 | 34.995 | 35.004 | 34.998 |
Volume (cm) | 61.110 | 64.537 | 64.403 | 64.558 | 64.562 |
Wingspan | 58.76 m |
Root Chord | 13.56 m |
Tip Chord | 2.73 m |
Wing Gross Area | 383.8 m |
Taper Ratio | 0.375 |
Leading Edge Sweep | |
Yehudi Chord | 7.56 m |
E1 [GPa] | 158.5 |
E2 [GPa] | 8.96 |
G12 [GPa] | 4.68 |
G13 [GPa] | 4.68 |
G23 [GPa] | 2.63 |
12 | 0.356 |
13 | 0.356 |
23 | 0.5 |
Ply Thickness [mm] | 0.183 |
[kg/m] | 1590 |
EPM | NASTRAN | |||
---|---|---|---|---|
Element Type | Nr of Elements | Element Type | Nr of Elements | |
Skins | CQUAD4 | 14,839 | ||
Spar, Rib Webs | QUAD-9 | 370 | 13,248 | |
Spar, Rib Caps | CROD | 4694 | ||
Associated DOF | 7875 | 149,648 |
Mass, kg | |
Tip Deflection, m | 4.1131 |
Tip Torsion, | 7.6 |
First Eigenfrequency, Hz | 2.1010 |
Flutter Speed, m/s | 509.2607 |
KS, Upper Skin | 0.9831 |
KS, Lower Skin | 0.9755 |
KS, Spar Caps | 0.9766 |
KS, Spar Webs | 0.9369 |
VLM | RANS Static | RANS Static Aeroelastic | |
---|---|---|---|
AoA | 1.6 | 3.3 | 4.4 |
Property | EPM * | 3D Static Aeroelastic Solution * |
---|---|---|
Mass, kg | 17,005 | 15,498 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafkas, A.; Kilimtzidis, S.; Kotzakolios, A.; Kostopoulos, V.; Lampeas, G. Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints. Aerospace 2021, 8, 398. https://doi.org/10.3390/aerospace8120398
Kafkas A, Kilimtzidis S, Kotzakolios A, Kostopoulos V, Lampeas G. Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints. Aerospace. 2021; 8(12):398. https://doi.org/10.3390/aerospace8120398
Chicago/Turabian StyleKafkas, Angelos, Spyridon Kilimtzidis, Athanasios Kotzakolios, Vassilis Kostopoulos, and George Lampeas. 2021. "Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints" Aerospace 8, no. 12: 398. https://doi.org/10.3390/aerospace8120398
APA StyleKafkas, A., Kilimtzidis, S., Kotzakolios, A., Kostopoulos, V., & Lampeas, G. (2021). Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints. Aerospace, 8(12), 398. https://doi.org/10.3390/aerospace8120398