Identification of Fixed-Wing Micro Aerial Vehicle Aerodynamic Derivatives from Dynamic Water Tunnel Tests
Abstract
:1. Introduction
2. Modelling of Aerodynamic Coefficients—A Short Review of the Literature
3. Water Tunnel Experiments
3.1. Water Tunnel Description
- stationary and non-stationary tests,
- tensometric scale calibration,
- controlling the spatial positioning of the model,
- controlling the water flow velocity in the tunnel,
- graphic illustration of the test results,
- imaging voltages on the strain gauges in the five-component scale.
3.2. The Model
3.3. Similarity Criteria and Tests Setup
- Re
- Reynold’s number [-]
- V
- flight speed [m/s]
- cA
- mean aerodynamic chord [m]
- cA
- kinematic viscosity [m2/s]
- Sr
- Strouhal number [-]
- D
- propeller diameter [m]
- Ω
- propeller angular velocity [rpm]
- f
- reduced frequency of micro-aircraft angular displacements
- ω
- micro-aircraft manoeuvre angular velocity [1/s]
- −
- “no-propulsion” configuration, i.e., with a stationary propeller hidden inside the wing gap;
- −
- for the propeller rotational speed corresponding to the Strouhal numbers of Sr=1.374 and Sr=2.522.
4. Results from Water Tunnel Tests
5. Identification of Aerodynamic Derivatives using Indicial Function
5.1. Indicial Function Theory
5.2. Identification Method
- —number of pseudo-transmittance poles +1
- —number of pseudo-transmittance zeros
- —input signal delay
5.3. Results of Identifying MAV Aerodynamic Characteristics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdulrahim, M.; Watkins, S.; Segal, R.; Sheridan, J. Dynamic sensitivity to atmospheric turbulence of Fixed-Wing UAV with varying configuration. J. Aircr. 2010, 47, 1873–1883. [Google Scholar] [CrossRef]
- Wróblewski, W.; Sibilski, K.; Garbowski, M.; Żyluk, A. The gust resistant MAV—Aerodynamic measurements, performance analysis, and flight tests (AIAA2015—1684 CP). In Proceedings of the AIAA SciTech Forum and AIAA Atmospheric Flight Mechanics Conference, Kissimmee, Fl, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Galiński, C. Gust resistant fixed wing micro aerial vehicle. J. Aircr. 2006, 43, 1586–1588. [Google Scholar] [CrossRef]
- Panta, A.; Mohamed, A.; Marino, M.; Watkins, S.; Fisher, A. Unconventional control solutions for small fixed wing unmanned aircraft. Prog. Aerosp. Sci. 2018, 2, 122–135. [Google Scholar] [CrossRef]
- Abramov, N.B.; Goman, M.G.; Khrabrov, A.N.; Kolesnikov, E.N.; Fucke, L.; Soemarwoto, B.; Smaili, H. Pushing ahead—SUPRA Airplane Model for Upset Recovery (AIAA 2012-4631 CP). In Proceedings of the AIAA Modelling and Simulation Technologies Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar] [CrossRef]
- Da Ronch, A.; Vallespin, D.; Ghoreyshi, M.; Badcock, K.J. Evaluation of dynamic derivatives using computational fluid dynamics. Aiaa J. 2012, 50, 470–484. [Google Scholar] [CrossRef]
- Harrison, S.; Darragh, R.; Hamlington, P.; Ghoreyshi, M.; Lofthouse, A. Canard-wing interference effects on the flight characteristics of a Transonic Passenger Aircraft (AIAA 2016-4179 CP). In Proceedings of the 34th AIAA Applied Aerodynamics Conference and AIAA AVIATION Forum, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Sereez, M.; Abramov, N.; Goman, M. Computational ground effect aerodynamics and airplane stability analysis during take-off and landing. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Milan, Italy, 3–6 July 2017; Available online: https://www.eucass.eu/doi/EUCASS2017-376.pdf (accessed on 12 July 2020).
- Ghoreyshi, M.; Jirásek, A.; Cummings, R. Computational approximation of nonlinear unsteady aerodynamics and aerodynamic model hierarchy. Aerosp. Sci. Technol. 2013, 28, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Tobak, M. On the Use of the Indicial Function Concept in the Analysis of Unsteady Motions of Wings and Wing-Tail Combinations; NACA Report No. 1188; The National Advisory Committee for Aeronautics: Washington, DC, USA, 1954; Available online: http://naca.central.cranfield.ac.uk/reports/1954/naca-report-1188.pdf (accessed on 12 July 2020).
- Roads, D.; Shuler, J. A theoretical and experimental study of aeroplane dynamics in large disturbance manoeuvres. J. Aeronaut. Sci. 1957, 24, 507–526. [Google Scholar] [CrossRef]
- Mehra, R.K.; Kessel, W.C.; Carroll, J.V. Global Stability and Control Analysis of Aircraft at High Angles of Attack; Report ONR-CR215-248-1; Office of Naval Research: Cambridge, MA, USA, 1977; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a084921.pdf (accessed on 12 July 2020).
- Orlik-Rückemann, K.J. Aerodynamic aspects of aircraft dynamics at high angles of attack. J. Aircraft. 1983, 20, 737–752. [Google Scholar] [CrossRef]
- Abed, E.H.; Lee, H.C. Nonlinear Stabilization of High Angle-of-Attack Flight Dynamics using Bifurcation Control. In Proceedings of the American Control Conference, San Diego, CA, USA, 23–25 May 1990; pp. 2235–2238. [Google Scholar] [CrossRef] [Green Version]
- Goman, M.G.; Khrabrov, A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack. J. Aircr. 1994, 31, 1109–1115. [Google Scholar] [CrossRef]
- Goman, M.G.; Stolyarov, G.I.; Tyrtyshnikov, S.L.; Usolcev, S.P.; Khrabrov, A.N. Mathematical Description of Longitudinal Aerodynamic Characteristics at High Angles of Attack Accounting for Dynamic Effects of Separated Flow; TsAGI Preprint No. 9; Central Aerohydrodynamic Institute: Zhukovskiy, Moscow Oblast, Russia, 1990. (In Russian) [Google Scholar]
- Etkin, B.; Reid, L.D. Dynamics of Atmospheric flight, 3rd ed.; John Willey & Sons Inc.: New York, NY, USA, 1996; ISBN 0-471-03418-5. [Google Scholar]
- Murphy, P.C.; Klein, V.; Frink, N.T. Nonlinear Unsteady Aerodynamic Modeling Using Wind-Tunnel and Computational Data. J. Aircr. 2017, 54, 659–683. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.J. Problems of Aircraft Behaviour at High Angles of Attack; AGARDograph 136; Queen Mary Coll London: London, UK, 1969. [Google Scholar]
- Nguyen, L.T.; Ogburn, M.E.; Gilbert, W.P.; Kibler, K.S.; Brown, P.W.; Deal, P.L. Simulator Study of Stall/Post Stall Characteristics of a Fighter Aeroplane with Relaxed Longitudinal Static Stability; NASA TP-1538; National Aeronautics and Space Administration: Washington, DC, USA, 1979. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800005879.pdf (accessed on 12 July 2020).
- Young, J.W.; Schy, A.A.; Johnson, K.G. Pseudo Steady—State Analysis of Non-Linear Aircraft Manoeuvres; NASA TP 1758; National Aeronautics and Space Administration: Moffet Field, CA, USA, 1980. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810004554.pdf (accessed on 12 July 2020).
- Tobak, M.; Chapman, G.T.; Schiff, L. Mathematical Modeling of the Aerodynamic Characteristics in Flight Dynamics; NASA TM 85880; National Aeronautics and Space Administration: Moffet Field, CA, USA, 1984. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850016895.pdf (accessed on 12 July 2020).
- Hafer, X.; Sachs, G. Flugmechanik Moderne Entwurfst—und Steuerungs Konzepte; Springer: Berlin/Heidelberg, Germany, 1991; ISBN 978-3-642-86730-9. [Google Scholar]
- Brandon, J.M. Dynamic stall effects and applications to high performance aircraft. In Special Course on Aircraft Dynamics at High Angles of Attack: Experiments and Modeling, 2.1–2.15; AGARD Report No. 776; NATO Researc & Technology Organization, The NATO Research and Technology Organisation,: Neuilly sur Seine, France, 1991. [Google Scholar]
- Lin, G.F.; Lan, C.E. A generalized dynamic aerodynamic coefficient model for flight dynamics applications (AIAA 97-3643CP). In Proceedings of the 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA, USA, 11–13 August 1997. [Google Scholar] [CrossRef]
- McAlister, K.W.; Lambert, O.; Petot, D. Application of the ONERA Model of Dynamic Stall; NASA TP2399/AVSCOM TP84-A-3; National Aeronautics and Space Administration, Moffett Field CA Ames Research Center: Mountain View, CA, USA, 1983; Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850004554.pdf (accessed on 12 July 2020).
- Beddoes, T.S. Practical computation of the unsteady lift. Vertica 1984, 8, 55–71. [Google Scholar]
- Leishman, J.G. Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow. J. Aircr. 1988, 25, 914–922. [Google Scholar] [CrossRef]
- Bryan, G.H.; Williams, W.E. The longitudinal stability of gliders. Proc. Roy. Soc. Lond. 1904, 73, 100–116. [Google Scholar] [CrossRef]
- Bairstow, L. Applied Aerodynamics; Longmans, Green and Co.: London, UK, 1929. [Google Scholar]
- Glauert, H. The Force and Moment on an Oscillating Airfoil. In Vorträge aus dem Gebiete der Aerodynamik und verw andter Gebiete; Gilles, A., Hopf, L.V., Kármán, T., Eds.; Springer: Berlin, Heidelberg, 1930. [Google Scholar] [CrossRef]
- Von Karman, T.H.; Sears, W.R. Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 1938, 5, 379–390. [Google Scholar] [CrossRef]
- Zipfel, P.H. Modeling and Simulation of Aerospace Vehicle Dynamics; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004; ISBN 978-1-56347-593-1. [Google Scholar]
- Abzug, N.J.; Larrabee, E.E. Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 0-521-80992-4. [Google Scholar]
- Pamadi, B.N. Performance, Stability, Dynamics, and Control of Airplanes, 2nd ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2005; ISBN 0-521-80992-4. [Google Scholar]
- Klein, V.; Noderer, K.D. Modeling of Aircraft Unsteady Aerodynamic Characteristics. Part 1—Postulated Models; NASA TM 109120; National Aeronautics and Space Administration: Langley, VA, USA, 1994. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940028445.pdf (accessed on 12 July 2020).
- Klein, V.; Noderer, K.D. Modeling of Aircraft Unsteady Aerodynamic Characteristics Part 2 – Parameters Estimated from Wind Tunnel Data; NASA TM 110161; National Aeronautics and Space Administration: Langley, VA, USA, 1996. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950021418.pdf (accessed on 12 July 2020).
- Klein, V.; Murphy, P.C.; Curry, T.J.; Brandon, J.M. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft; NASA TM-97-206276; National Aeronautics and Space Administration: Washington, DC, USA, 1997. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980007406.pdf (accessed on 12 July 2020).
- Klein, V.; Murphy, P.C.; Szyba, N.M. Analysis of Wind Tunnel Lateral Oscillatory Data of the F-16XL Aircraft; NASA TM-2004-213246; National Aeronautics and Space Administration: Washington, DC, USA, 2004. Available online: https://ntrs.nasa.gov/search.jsp?R=20040110955 (accessed on 12 July 2020).
- Murphy, P.C.; Klein, V. Estimation of aircraft unsteady aerodynamic parameters from dynamic wind tunnel testing (AIAA 2001-4016 CP). In Proceedings of the AIAA Atmospheric Flight Mechanics Conference & Exhibit, Montreal, Canada, 6–9 August 2001. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.C.; Klein, V.; Szyba, N.M. Progressive aerodynamic model identification from dynamic water tunnel test of the F-16XL Aircraft (AIAA 2004-5277 CP). In Proceedings of the AIAA Atmospheric Flight Mechanics Conference & Exhibit, Providence, Rhode Island, 16–19 August 2004. [Google Scholar] [CrossRef] [Green Version]
- Reisenthel, P.H. Development of a nonlinear indicial model for maneuvering fighter aircraft (AIAA 96-0896CP). In Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996. [Google Scholar] [CrossRef]
- Ogata, K. State Space Analysis of Control Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1967. [Google Scholar]
- Lichota, P.; Szulczyk, J.; Noreña, D.A.; Vallejo Monsalve, F.A. Power spectrum optimization in the design of multisine manoeuvre for identification purposes. J. Appl. Mech. 2017, 55, 1193–1203. [Google Scholar] [CrossRef]
- Kerho, M.; Kramer, B.R. Research Water Tunnels—Specification; Rolling Hills Research Corporation (RHRC): El Segundo, CA, USA, 2003. [Google Scholar]
- Kerho, M.; Kramer, B.R. Five-Component Balance and Computer-Controlled Model Support System for Water Tunnel Applications; Rolling Hills Research Corporation (RHRC): El Segundo, CA, USA, 2009. [Google Scholar]
- Kerho, M.; Kramer, B.R. Ultrasonic Flowmeter and Temperature Probe; Rolling Hills Research Corporation (RHRC): El Segundo, CA, USA, 2010. [Google Scholar]
- Garbowski, M. Identification of Non-stationary Aerodynamic Characteristics of a Micro Aircraft in the Range Low Reynolds Numbers. Ph.D. Thesis, Department of Mechanics and Power Engineering, Wroclaw University of Technology, PRE, Wroclaw, Poland, 2014. [Google Scholar]
- Morelli, E.A.; Klein, V. Accuracy of aerodynamic model parameters estimated from flight test data. J. Guid. Control Dyn. 1997, 20, 74–80. [Google Scholar] [CrossRef]
- Ericsson, L.E. The fluid mechanics of slender wing rock. J. Aircr. 1984, 21, 322–328. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Lan, C.E. Theory of Wing Rock; NASA CR-176640; National Aeronautics and Space Administration: Hampton, VA, USA, 1984. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860012049.pdf (accessed on 12 July 2020).
ω [rad/s] | f for Re = 50,000 | f for Re = 28,000 |
---|---|---|
0.0087 | 0.0054 | 0.0099 |
0.0131 | 0.0081 | 0.0148 |
0.0174 | 0.0108 | 0.0197 |
0.0218 | 0.0134 | 0.0247 |
0.0262 | 0.0161 | 0.0296 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibilski, K.; Nowakowski, M.; Rykaczewski, D.; Szczepaniak, P.; Żyluk, A.; Sibilska-Mroziewicz, A.; Garbowski, M.; Wróblewski, W. Identification of Fixed-Wing Micro Aerial Vehicle Aerodynamic Derivatives from Dynamic Water Tunnel Tests. Aerospace 2020, 7, 116. https://doi.org/10.3390/aerospace7080116
Sibilski K, Nowakowski M, Rykaczewski D, Szczepaniak P, Żyluk A, Sibilska-Mroziewicz A, Garbowski M, Wróblewski W. Identification of Fixed-Wing Micro Aerial Vehicle Aerodynamic Derivatives from Dynamic Water Tunnel Tests. Aerospace. 2020; 7(8):116. https://doi.org/10.3390/aerospace7080116
Chicago/Turabian StyleSibilski, Krzysztof, Mirosław Nowakowski, Dariusz Rykaczewski, Paweł Szczepaniak, Andrzej Żyluk, Anna Sibilska-Mroziewicz, Michał Garbowski, and Wiesław Wróblewski. 2020. "Identification of Fixed-Wing Micro Aerial Vehicle Aerodynamic Derivatives from Dynamic Water Tunnel Tests" Aerospace 7, no. 8: 116. https://doi.org/10.3390/aerospace7080116
APA StyleSibilski, K., Nowakowski, M., Rykaczewski, D., Szczepaniak, P., Żyluk, A., Sibilska-Mroziewicz, A., Garbowski, M., & Wróblewski, W. (2020). Identification of Fixed-Wing Micro Aerial Vehicle Aerodynamic Derivatives from Dynamic Water Tunnel Tests. Aerospace, 7(8), 116. https://doi.org/10.3390/aerospace7080116