Next Article in Journal
Modular Multifunctional Composite Structure for CubeSat Applications: Preliminary Design and Structural Analysis
Next Article in Special Issue
The Bird Strike Challenge
Previous Article in Journal / Special Issue
Operational Feasibility Analysis of the Multimodal Controller Working Position “TriControl”
Open AccessArticle

Go-Around Detection Using Crowd-Sourced ADS-B Position Data

National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Aerospace 2020, 7(2), 16;
Received: 5 December 2019 / Revised: 14 February 2020 / Accepted: 17 February 2020 / Published: 21 February 2020
(This article belongs to the Collection Air Transportation—Operations and Management)
The decision of a flight crew to undertake a go-around, aborting a landing attempt, is primarily to ensure the safe conduct of a flight. Although go-arounds are rare, they do cause air traffic disruption, especially in busy airspace, due to the need to accommodate an aircraft in an unusual position, and a go-around can also result in knock-on delays due to the time taken for the aircraft to re-position, fit into the landing sequence and execute a successful landing. Therefore, it is important to understand and alleviate the factors that can result in a go-around. In this paper, I present a new method for automatically detecting go-around events in aircraft position data, such as that sent via the ADS-B system, and apply the method to one year of approach data for Chhatrapati Shivaji Maharaj International Airport (VABB) in Mumbai, India. I show that the method is significantly more accurate than other methods, detecting go-arounds with very few false positives or negatives. Finally, I use the new method to reveal that while there is no one cause for go-arounds at this airport, the majority can be attributed to weather and/or an unstable approach. I also show that one runway (14/32) has a significantly higher proportion of go-arounds than the other (09/27). View Full-Text
Keywords: go-around; ADS-B; safety; airports; approach go-around; ADS-B; safety; airports; approach
Show Figures

Figure 1

MDPI and ACS Style

Proud, S.R. Go-Around Detection Using Crowd-Sourced ADS-B Position Data. Aerospace 2020, 7, 16.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop