Assessing the Climate Impact of Formation Flights
Abstract
:1. Introduction
2. Methods and Data
2.1. Estimating Non-Linearity Factors Required for Non-Linear-Response Model AirClim
2.2. Model Study with Non-Linear-Response Model AirClim to Quantify Benefits of Formation Flight
3. Results
3.1. Non-Linearity Factors Resulting from CiC and NOx
3.2. Total Climate Impact: Mitigation Potential of Formation Flight
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
IATA Code | City/Airport | Country |
---|---|---|
ATL | Atlanta (GA)-Hartsfield Atlanta International Airport | USA |
PEK | Beijing | China |
DXB | Dubai-Dubai International Airport | United Arab Emirates |
HND | Tokyo-Haneda | Japan |
LAX | Los Angeles (CA)-International | USA |
ORD | Chicago (IL), O’Hare International Airport | USA |
LHR | London-Heathrow | United Kingdom |
HKG | Hong Kong-International Airport (HKIA) | Hong Kong |
PVG | Shanghai-Pu Dong | China |
CDG | Paris-Charles de Gaulle | France |
AMS | Amsterdam-Amsterdam Airport Schiphol | Netherlands |
DFW | Dallas/Ft. Worth (TX)-Dallas/Fort Worth International | USA |
CAN | Guangzhou (Canton)-Baiyun International Airport | Guangdong, PR China |
FRA | Frankfurt/Main-Frankfurt Airport (Rhein-Main-Flughafen) | Germany |
IST | Istanbul-Istanbul Atatürk Airport | Turkey |
DEL | Delhi-Indira Gandhi International Airport | India |
CGK | Jakarta-Soekarno-Hatta International | Indonesia |
SIN | Singapore-Changi | Singapore |
ICN | Seoul-Incheon International Airport | Korea South |
DEN | Denver (CO)-Denver International Airport | USA |
BKK | Bangkok, Suvarnabhumi International | Thailand |
JFK | New York-John F. Kennedy (NY) | USA |
KUL | Kuala Lumpur-International Airport | Malaysia |
SFO | San Francisco-International Airport, SA | USA |
MAD | Madrid-Barajas Airport | Spain |
CTU | Chengdu-Shuangliu | Sichuan, PR China |
LAS | Las Vegas (NV) | USA |
BCN | Barcelona | Spain |
BOM | Bombay (Mumbai)-Chhatrapati Shivaji International | India |
YYZ | Toronto-Toronto Pearson International Airport | Canada |
SEA | Seattle/Tacoma (WA) | USA |
CLT | Charlotte (NC) | USA |
LGW | London-Gatwick | United Kingdom |
SZX | Shenzhen-Shenzhen Bao’an International | Guangdong, PR China |
TPE | Taipei-Chiang Kai Shek | Taiwan |
MEX | Mexico City-Mexico City International Airport | Mexico |
KMG | Kunming Changshui International Airport | Yunnan, PR China |
MUC | Muenchen (Munich)-Franz Josef Strauss | Germany |
MCO | Orlando-International Airport (FL) | USA |
MIA | Miami (FL) | USA |
PHX | Phoenix (AZ)-Sky Harbor International | USA |
SYD | Sydney-Sydney Airport | Australia |
EWR | New York-Newark (NJ) | USA |
MNL | Manila-Ninoy Aquino International | Philippines |
SHA | Shanghai-Hongqiao | China |
XIY | Xi’an-Xianyang | Shaanxi, PR China |
FCO | Rome-Fuimicino | Italy |
IAH | Houston, TX-George Bush Intercontinental Airport | USA |
NRT | Tokyo-Narita | Japan |
SVO | Moscow-Sheremetyevo | Russia |
References
- Weimerskirch, H.; Martin, J.; Clerquin, Y.; Alexandre, P.; Jiraskova, S. Energy saving in flight formation. Nature 2001, 413, 697–698. [Google Scholar] [CrossRef]
- Xu, J.; Ning, A.; Bower, G.; Kroo, I. Aircraft Route Optimization for Formation Flight. J. Aircr. 2014, 51, 490–501. [Google Scholar] [CrossRef] [Green Version]
- Unterstrasser, S.; Stephan, A. Far field wake vortex evolution of two aircraft formation flight and implications on young contrails. Aeronaut. J. 2020, 124, 667–702. [Google Scholar] [CrossRef] [Green Version]
- Unterstrasser, S. The contrail mitigation potential of aircraft formation flight derived from high-resolution simulations. Aerospace 2020, 7, 170. [Google Scholar] [CrossRef]
- Liu, S.C.; Trainer, M.; Fehsenfeld, F.C.; Parrish, D.D.; Williams, E.J.; Fahey, D.W.; Hübler, G.; Murphy, P.C. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. 1987, 92, e4191–e4207. [Google Scholar] [CrossRef]
- Lin, X.; Trainer, M.; Liu, S.C. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. 1988, 93, 15879–15888. [Google Scholar] [CrossRef] [Green Version]
- Grooß, J.-U.; Brühl, C.; Peter, T. Impact of aircraft emissions on tropospheric and stratospheric ozone. Part I: Chemistry and 2-D model results. Atmos. Environ. 1998, 32, 3152–3184. [Google Scholar]
- Dahlmann, K.; Grewe, V.; Ponater, M.; Matthes, S. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 2011, 45, 2860–2868. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Dahlmann, K.; Matthes, S.; und Steinbrecht, W. Attributing ozone to NOx emissions: Implications for climate mitigation measures. Atmos. Environ. [CrossRef] [Green Version]
- Grewe, V.; Matthes, S.; Dahlmann, K. The contribution of aviation NOx emissions to climate change: Are we ignoring methodological flaws? Environ. Res. Lett. 2019, 14, 121003. [Google Scholar] [CrossRef]
- Liu, Y. Investigation on the Benefit and Feasibility of Applying Formation Flight to Civil Transport Aircraft. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2016. [Google Scholar]
- Roeckner, E.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kornblueh, L.; Manzini, E.; Schlese, U.; Schulzweida, U. Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model. J. Clim. 2006, 19, 3771–3791. [Google Scholar] [CrossRef]
- Jöckel, P.; Tost, H.; Pozzer, A.; Kunze, M.; Kirner, O.; Brenninkmeijer, C.A.M.; Brinkop, S.; Cai, D.S.; Dyroff, C.; Eckstein, J.; et al. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51. Geosci. Model Dev. 2016, 9, 1153–1200. [Google Scholar] [CrossRef] [Green Version]
- Sander, R.; Baumgaertner, A.; Gromov, S.; Harder, H.; Jöckel, P.; Kerkweg, A.; Kubistin, D.; Regelin, E.; Riede, H.; Sandu, A.; et al. The atmospheric chemistry box model CAABA/MECCA-3.0. Geosci. Model Dev. 2011, 4, 373–380. [Google Scholar] [CrossRef]
- Owen, B.; Lim, L.L.; Gray, E.; Lee, D.S. Emission Inventories for Sensitivity Studies, CATE; Data Originators: Lim, Ling (MMU); Manchester Metropolitan University: Manchester, UK, 2011. [Google Scholar]
- Smolarkiewicz, P.K.; Margolin, L.G. On Forward-in-Time Differencing for Fluids; An Eulerian/Semi-Lagrangian Nonhydrostatic Model for Stratified Flows. Atmos. Ocean. 1997, 35, 127–152. [Google Scholar] [CrossRef]
- Sölch, I.; Kärcher, B. A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. R. Meteorol. Soc. 2010, 136, 2074–2093. [Google Scholar] [CrossRef] [Green Version]
- Unterstrasser, S.; Gierens, K.; Sölch, I.; Wirth, M. Numerical simulations of homogeneously nucleated natural cirrus and contrail-cirrus. Part 2: Interaction on local scale. Meteorol. Z. 2017, 26, 643–661. [Google Scholar] [CrossRef]
- Grewe, V.; Stenke, A. Airclim: An efficient tool for climate evaluation of aircraft technology. Atmo. Spheric. Chem. Phys. 2008, 8, 4621–4639. [Google Scholar] [CrossRef] [Green Version]
- Dahlmann, K.; Grewe, V.; Frömming, C.; Burkhardt, U. Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes? Transp. Res. Part D Transp. Environ. 2016, 46, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Bock, L.; Burkhardt, U.; Dahlmann, K.; Gierens, K.; Hüttenhofer, L.; Unterstrasser, S.; Gangoli Rao, A.; Bath, A.; Yin, F.; et al. Assessing the climate impact of the AHEAD multi-fuel blended wing body. Meteorol. Z. 2016. [Google Scholar] [CrossRef]
- Grewe, V.; Plohr, M.; Cerino, G.; Di Muzio, M.; Deremaux, Y.; Galerneau, M.; de Staint Martin, P.; Chaika, T.; Hasselrot, A.; Tengzelius, U.; et al. Estimates of the climate impact of future small-scale supersonic transport aircraft–results from the HISAC EU-project. Aeronaut. J. 2010, 114, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Hepting, M.; Pak, H.; Grimme, W.; Dahlmann, K.; Jung, M.; Wilken, D. Climate impact of German air traffic: A scenario approach. Transp. Res. Part D 2020, 85, 102467. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Grewe, V.; Dahlmann, K. How ambiguous are climate metrics? And are we prepared to assess and compare the climate impact of new air traffic technologies? Atmos. Environ. 2015, 106, 373–374. [Google Scholar] [CrossRef] [Green Version]
- Marks, T.; Dahlmann, K.; Grewe, V.; Gollnick, V.; Linke, F.; Matthes, S.; Stumpf, E.; Unterstrasser, S.; Yamashita, H.; Zumegen, C. Climate Impact Mitigation Potential of Formation Flight. Aerospace 2020. submitted. [Google Scholar]
- IPCC. ‘Aviation and the Global Atmosphere’ A Special Report of IPCC Working Groups I and III. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1999. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Linke, F. Ökologische Analyse Operationeller Lufttransportkonzepte. Ph.D. Thesis, Technische Universität Hamburg-Harburg, Hamburg, Germany, 2016. [Google Scholar]
- Lührs, B. Erweiterung eines Trajektorienrechners zur Nutzung Meteorologischer Daten für die Optimierung von Flugzeugtrajektorien. Master’s Thesis, Hamburg University of Technology (TUHH), Hamburg, Germany, 2013. [Google Scholar]
- Marks, T.; Swaid, M.; Lührs, B.; Gollnick, V.; Center, G.A. Identification of optimal rendezvous and separation areas for formation flight under consideration of wind. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brasilien, 9–14 September 2018. [Google Scholar]
- Irvine, E.A.; Hoskins, B.J.; Shine, K.P.; Lunnon, R.W.; Froemming, C. Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. 2013, 20, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Meerkötter, R.; Schumann, U.; Doelling, D.R.; Minnis, P.; Nakajima, T. und Tsushima, Y. Radiative forcing by contrails. Ann. Geophys. 1999, 17, 1080–1094. [Google Scholar] [CrossRef]
- Burkhardt, U.; Kärcher, B. Global radiative forcing from contrail cirrus. Nat. Clim. Chang. 2011, 1, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Dahlmann, K.; Koch, A.; Linke, F.; Lührs, B.; Grewe, V.; Otten, T.; Seider, D.; Gollnick, V.; Schumann, U. Climate-compatible air transport system-climate impact mitigation potential for actual and future aircraft. Aerospace 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Matthes, S.; Frömming, C.; Brinkop, S.; Jöckel, P.; Gierens, K.; Champougny, T.; Fuglestvedt, J.; Haslerud, A.; Irvine, E.; et al. Feasibility of climate-optimized air traffic routing for trans-Atlantic flights. Environ. Res. Lett. 2017, 12, 34003/1–34003/9. [Google Scholar] [CrossRef]
- Matthes, S.; Grewe, V.; Dahlmann, K.; Frömming, C.; und Irvine, E.; Lim, L.; Linke, F.; Lührs, B.; Owen, B.; Shine, K.; et al. A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories. Aerospace 2017, 4, 42. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlmann, K.; Matthes, S.; Yamashita, H.; Unterstrasser, S.; Grewe, V.; Marks, T. Assessing the Climate Impact of Formation Flights. Aerospace 2020, 7, 172. https://doi.org/10.3390/aerospace7120172
Dahlmann K, Matthes S, Yamashita H, Unterstrasser S, Grewe V, Marks T. Assessing the Climate Impact of Formation Flights. Aerospace. 2020; 7(12):172. https://doi.org/10.3390/aerospace7120172
Chicago/Turabian StyleDahlmann, Katrin, Sigrun Matthes, Hiroshi Yamashita, Simon Unterstrasser, Volker Grewe, and Tobias Marks. 2020. "Assessing the Climate Impact of Formation Flights" Aerospace 7, no. 12: 172. https://doi.org/10.3390/aerospace7120172
APA StyleDahlmann, K., Matthes, S., Yamashita, H., Unterstrasser, S., Grewe, V., & Marks, T. (2020). Assessing the Climate Impact of Formation Flights. Aerospace, 7(12), 172. https://doi.org/10.3390/aerospace7120172