Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods to Identify Climate-Optimized Aircraft Trajectories
2.2. Performance and Robustness Assessment of Climate-Optimized Trajectories
2.3. One Day Case Study of European Air Traffic
3. Results
Mitigation Potential of Climate-Optimized Trajectories
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATM | Air Traffic Management | ECF | Environmental Change Functions |
ATC | Air Traffic Control | ERA | European Reanalysis Analysis |
ATR | Average Temperature Response | GWP | Global Warming Potential |
aCCF | Algorithmic Climate Change functions | GTP | Global Temperature Potential |
AIC | Aviation induced cloudiness | MET | Meteorological data |
CCF | Climate Change Functions | TOM | Trajectory Optimisation Module |
References
- Green, J. Air Travel-Greener by Design. Mitigating the environmental impact of aviation: Opportunities and priorities. Aeronaut. J. 2005, 109, 361–418. [Google Scholar]
- Irvine, E.A.; Hoskins, B.J.; Shine, K.P. A simple framework for assessing the tradeoff between the climate impact of aviation carbon dioxide emissions and contrails for a single flight. Environ. Res. Lett. 2014, 9, 064021. [Google Scholar]
- Hartjes, S.; Hendriks, J.; Visser, H. Contrail Mitigation through 3D Aircraft Trajectory Optimization. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar]
- Grewe, V.; Frömming, C.; Matthes, S.; Brinkop, S.; Ponater, M.; Dietmüller, S.; Jöckel, P.; Garny, H.; Tsati, E.; Dahlmann, K.; et al. Aircraft routing with minimal climate impact: The REACT4C climate cost function modelling approach (V1.0). Geosci. Model Dev. 2014, 7, 175–201. [Google Scholar]
- Matthes, S.; Grewe, V.; Dahlmann, K.; Frömming, C.; Irvine, E.; Lim, L.; Linke, F.; Lührs, B.; Owen, B.; Shine, K.P.; et al. A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories. Aerospace 2017, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Schumann, U.; Grewe, V.; Frömming, C.; Dahlmann, K.; Koch, A.; Mannstein, H. Climate Optimized Air Transport. In Atmospheric Physics: Background-Methods Trends; Schumann, U.U., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 727–746. [Google Scholar] [CrossRef]
- Teoh, R.R.; Schumann, U.U.; Majumdar, A.A.; Stettler, M.E.J. Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Environ. Sci. Technol. 2020, 54, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Grewe, V.; Champougny, T.; Matthes, S.; Frömming, C.; Brinkop, S.; Søvde, O.; Irvine, E.; Halscheidt, L. Reduction of the air traffic’s contribution to climate change: A REACT4C case study. Atmos. Environ. 2014, 94, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Dahlmann, K. How ambiguous are climate metrics? And are we prepared to assess and compare the climate impact of new air traffic technologies? Atmos. Environ. 2015, 106, 373–374. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Dahlmann, K.; Flink, J.; Frömming, C.; Ghosh, R.; Gierens, K.; Heller, R.; Hendricks, J.; Jöckel, P.; Kaufmann, S.; et al. Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project. Aerospace 2017, 4, 34. [Google Scholar] [CrossRef]
- Frömming, C.; Grewe, V.; Brinkop, S.; Haslerud, A.S.; Rosanka, S.; van Manen, J.; Matthes, S. The REACT4C Climate Change Functions: Impact of the actual weather situation on aviation climate effects. Atmos. Chem. Phys. (under review).
- Van Manen, J.; Grewe, V. Algorithmic climate change functions for the use in eco-efficient flight planning. Transp. Res. Part D 2019, 67, 388–405. [Google Scholar] [CrossRef]
- Yin, F.; Grewe, V.; van Manen, J.; Matthes, S.; Yamashita, H.; Irvine, E.; Shine, K.P.; Lührs, B.; Linke, F. Verification of the ozone algorithmic climate change functions for predicting the short-term NOx effects from aviation en-route. In Proceedings of the International Conference on Research in Air Transportation (ICRAT), Barcelona, Spain, 26−29 June 2018. [Google Scholar]
- Yamashita, H.; Yin, F.; Grewe, V.; Jöckel, P.; Matthes, S.; Kern, B.; Dahlmann, K.; Frömming, C. Various aircraft routing options for air traffic simulation in the chemistry-climate model EMAC 2.53: AirTraf 2.0. Geosci. Model Dev. 2019. (accepted). [Google Scholar] [CrossRef]
- Lührs, B.; Linke, F.; Matthes, S.; Grewe, V.; Yin, F.; Shine, K.P. Climate optimized trajectories in Europe. Aerospace ECATS Special Issue Making Aviation environmentally sustainable. (under review, in preparation).
- Allen, M.; Fuglestvedt, J.; Shine, K.; Reisinger, A.; Raymond, T.; Pierrehumbert, R.T.; Forster, P.M. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Chang. 2016, 6, 773–776. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Matthes, S.; Dahlmann, K. The contribution of aviation NOx emissions to climate change: Are we ignoring methodological flaws. Environ. Res. Lett. 2019, 14, 121003. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.; Lee, D.S.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Bickel, M.; Ponater, M.; Bock, L.; Burkhardt, U.; Reineke, S. Estimating the Effective Radiative Forcing of Contrail Cirrus. J. Clim. 2020, 33, 1991–2005. [Google Scholar] [CrossRef] [Green Version]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef]
- Dahlmann, K.; Grewe, V.; Yamashita, H.; Matthes, S. Climate assessment of single flights: Deduction of route specific equivalent CO2 emissions. in preparation.
- Cracknell, A.P. The Advanced Very High Resolution Radiometer; Taylor and Francis: London, UK, 1997. [Google Scholar]
- Matthes, S.; Lim, L.; Burkhardt, U.; Dahlmann, K.; Dietmüller, S.; Grewe, V.; Haselrut, A.; Hendricks, J.; Lee, D.S.; Owen, B.; et al. Mitigation of non-CO2 effect from aviation by changing cruise altitudes. Aerospace. (in preparation).
- Yin, F.; Grewe, V.; Matthes, S.; Yamashita, H.; Irvine, E.; Shine, K.P.; Lührs, B.; Linke, F. Predicting the climate impact of aviation for en-route emissions: The algorithmic climate change function sub model ACCF 1.0 of EMAC 2.53. Geosci. Mod. Dev. Disc. (in preparation).
- Grewe, V.; Matthes, S.; Frömming, C.; Brinkop, S.; Jöckel, P.; Gierens, K.; Champougny, T.; Fuglestvedt, J.; Haslerud, A.; Irvine, E.; et al. Climate-optimized air traffic routing for trans-Atlantic flights. Environ. Res. Lett. 2017, 12, 034003. [Google Scholar] [CrossRef]
- ATM4E, Final Report, D5.3, June 2018. SESAR-04-2015, Exploratory Project, Grant No. 699395. Available online: www.atm4e.eu/workpackages/pdfs. (accessed on 1 July 2020).
- ATM4E, Conceptual Roadmap, D4.3, June 2018. SESAR-04-2015, Exploratory Project, Grant No. 699395. Available online: www.atm4e.eu/workpackages/pdfs. (accessed on 1 July 2020).
- Matthes, S.; Grewe, V.; Forster, C.; Gerz, T. Advanced MET Services for Enhanced Safety and Climate Optimisation of Aircraft Trajectories within 5DMET-Advisory; European Geoscience Union: Munich, Germany, 2018. [Google Scholar]
- Kuenz, A.; Schwoch, G.; Korn, B.; Forster, C.; Gerz, T.; Grewe, V.; Matthes, S.; Graupl, T.; Rippl, M.; Linke, F.; et al. Optimization without Limits—The World Wide Air Traffic Management Project. In Proceedings of the IEEE/AIAA 36TH Digital Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 17–21 September 2017; pp. 1–10. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.; Petzold, A.; Prather, M.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef] [Green Version]
Route/Fuel Increase | 0% | 0.5% | 1% | 2% | 5% |
---|---|---|---|---|---|
Helsinki–Gran Canaria | 9.5 | 5.0 | 4.9 | 4.7 | 4.5 |
Baku–Luxembourg | 4.3 | 3.9 | 3.7 | 3.4 | 2.9 |
Lulea–Gran Canaria | 10.2 | 6.8 | 6.6 | 5.6 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthes, S.; Lührs, B.; Dahlmann, K.; Grewe, V.; Linke, F.; Yin, F.; Klingaman, E.; Shine, K.P. Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E. Aerospace 2020, 7, 156. https://doi.org/10.3390/aerospace7110156
Matthes S, Lührs B, Dahlmann K, Grewe V, Linke F, Yin F, Klingaman E, Shine KP. Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E. Aerospace. 2020; 7(11):156. https://doi.org/10.3390/aerospace7110156
Chicago/Turabian StyleMatthes, Sigrun, Benjamin Lührs, Katrin Dahlmann, Volker Grewe, Florian Linke, Feijia Yin, Emma Klingaman, and Keith P. Shine. 2020. "Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E" Aerospace 7, no. 11: 156. https://doi.org/10.3390/aerospace7110156
APA StyleMatthes, S., Lührs, B., Dahlmann, K., Grewe, V., Linke, F., Yin, F., Klingaman, E., & Shine, K. P. (2020). Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E. Aerospace, 7(11), 156. https://doi.org/10.3390/aerospace7110156