Next Article in Journal
Taxonomy of Gas Turbine Blade Defects
Next Article in Special Issue
Supersonic Compressor Cascade Shape Optimization under Multiple Inlet Mach Operating Conditions
Previous Article in Journal
The Application of Computational Thermo-Fluid-Dynamics to the Simulation of Hybrid Rocket Internal Ballistics with Classical or Liquefying Fuels: A Review
Open AccessArticle

Accurate 2-D Modelling of Transonic Compressor Cascade Aerodynamics

Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
Author to whom correspondence should be addressed.
Aerospace 2019, 6(5), 57;
Received: 15 April 2019 / Revised: 9 May 2019 / Accepted: 15 May 2019 / Published: 19 May 2019
(This article belongs to the Special Issue Progress in Jet Engine Technology)
Modern aeronautic fans are characterised by a transonic flow regime near the blade tip. Transonic cascades enable higher pressure ratios by a complex system of shockwaves arising across the blade passage, which has to be correctly reproduced in order to predict the performance and the operative range. In this paper, we present an accurate two-dimensional numerical modelling of the ARL-SL19 transonic compressor cascade. A large series of data from experimental tests in supersonic wind tunnel facilities has been used to validate a computational fluid dynamic model, in which the choice of turbulence closure resulted critical for an accurate reproduction of shockwave-boundary layer interaction. The model has been subsequently employed to carry out a parametric study in order to assess the influence of main flow variables (inlet Mach number, static pressure ratio) and geometric parameters (solidity) on the shockwave pattern and exit status. The main objectives of the present work are to perform a parametric study for investigating the effects of the abovementioned variables on the cascade performance, in terms of total-pressure loss coefficient, and on the shockwave pattern and to provide a quite large series of data useful for a preliminary design of a transonic compressor rotor section. After deriving the relation between inlet and exit quantities, peculiar to transonic compressors, exit Mach number, mean exit flow angle and total-pressure loss coefficient have been examined for a variety of boundary conditions and parametrically linked to inlet variables. Flow visualisation has been used to describe the shock-wave pattern as a function of the static pressure ratio. Finally, the influence of cascade solidity has been examined, showing a potential reduction of total-pressure loss coefficient by employing a higher solidity, due to a significant modification of shockwave system across the cascade. View Full-Text
Keywords: ARL-SL19 transonic compressor; CFD validation; parametric analysis ARL-SL19 transonic compressor; CFD validation; parametric analysis
Show Figures

Figure 1

MDPI and ACS Style

Piovesan, T.; Magrini, A.; Benini, E. Accurate 2-D Modelling of Transonic Compressor Cascade Aerodynamics. Aerospace 2019, 6, 57.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop