A Fast Correction Method of Model Deformation Effects in Wind Tunnel Tests
Abstract
:1. Introduction
2. Fast Correction Methods
2.1. Introduction to Method
2.2. Parametric Description of Wing Deformation
2.3. Modelling of Aerodynamic Forces
2.4. Correction of Model Deformation Effects
3. Parametric Analysis
3.1. HIRENASD Model
3.2. CFD and CAE Solvers
3.3. Modelling Case
3.4. Effects of Wing Section Location
3.5. Effects of Basis Function Type
3.6. Effects of Support Radius
3.7. Effects of Deformation Perturbation
4. Application
4.1. NASA CRM Model
4.2. Experimental Data of CRM Model
4.3. Pseudo-Experimental Forces on the Rigid Shape
4.4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Elham, A.; Horst, P.; Hepperle, M. Exploring vehicle level benefits of revolutionary technology progress via aircraft design and optimization. Energies 2018, 11, 166. [Google Scholar] [CrossRef]
- Pallek, D.; Butefisch, K.; Quest, J.; Strudthoff, W. Model deformation measurement in ETW using the moiré technique. In Proceedings of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF’03), Gottingen, Germany, 25–29 August 2003; pp. 110–114. [Google Scholar]
- Liu, D.; Xu, X.; Li, Q.; Peng, X.; Chen, D. Correction of model deformation effects for a supercritical wing in transonic wind tunnel. Tehnički Vjesnik 2017, 24, 1647–1655. [Google Scholar] [Green Version]
- Hantrais-Gervois, J.L.; Destarac, D. Drag polar invariance with flexibility. J. Aircr. 2015, 52, 997–1001. [Google Scholar] [CrossRef]
- Burner, A.; Goad, W.; Massey, E.; Goad, L.; Goodliff, S.; Bissett, O. Wing deformation measurements of the DLR-F6 transport configuration in the National Transonic Facility. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 18–21 August 2008; p. 6921. [Google Scholar]
- Keye, S.; Rudnik, R. Aero-Elastic Simulation of DLR’s F6 Transport Aircraft Configuration and Comparison to Experimental Data. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009; p. 580. [Google Scholar]
- Owens, L.R.; Wahls, R.A.; Rivers, S.M. Off-design Reynolds number effects for a supersonic transport. J. Aircr. 2005, 42, 1427–1441. [Google Scholar] [CrossRef]
- Al-Saadi, J.A. Effect of Reynolds Number, Boundary-Layer Transition, and Aeroelasticity on Longitudinal Aerodynamic Characteristics of a Subsonic Transport Wing; NASA TP-3655; NASA: Washington, DC, USA, 1997.
- Wahls, R.A.; Gloss, B.B.; Flechner, S.G.; Johnson, W.G., Jr.; Wright, F.; Nelson, C.; Nelson, R.; Elzey, M.; Hergert, D. A High Reynolds Number Investigation of a Commercial Transport Model in the National Transonic Facility; NASA TM-4418; NASA: Washington, DC, USA, 1993.
- Rolston, S.; Elsholz, E. Initial Achievements of the European High Reynolds Number Aerodynamic Research Project “HiReTT”. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002; p. 421. [Google Scholar]
- Rumsey, C.L.; Slotnick, J.P.; Sclafani, A.J. Overview and Summary of the Third AIAA High Lift Prediction Workshop. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1258. [Google Scholar]
- Derlaga, J.M.; Morrison, J.H. Statistical Analysis of the Sixth AIAA Drag Prediction Workshop Solutions. J. Aircr. 2018, 55, 1388–1400. [Google Scholar] [CrossRef]
- Roy, C.J.; Rumsey, C.L.; Tinoco, E.N. Summary Data from the Sixth AIAA Computational Fluid Dynamics Drag Prediction Workshop: Code Verification. J. Aircr. 2018, 55, 1338–1351. [Google Scholar] [CrossRef]
- Vassberg, J.C.; Tinoco, E.N.; Mani, M.; Rider, B.; Zickuhr, T.; Levy, D.W.; Brodersen, O.P.; Eisfeld, B.; Crippa, S.; Wahls, R.A.; et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop. J. Aircr. 2014, 51, 1070–1089. [Google Scholar] [CrossRef]
- Levy, D.W.; Laflin, K.R.; Tinoco, E.N.; Vassberg, J.C.; Mani, M.; Rider, B.; Rumsey, C.L.; Wahls, R.A.; Morrison, J.H.; Brodersen, O.P.; et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop. J. Aircr. 2014, 51, 1194–1213. [Google Scholar] [CrossRef]
- Rivers, M.; Hunter, C.; Campbell, R. Further investigation of the support system effects and wing twist on the NASA common research model. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012; p. 3209. [Google Scholar]
- Hue, D. Fifth drag prediction workshop: ONERA investigations with experimental wing twist and laminarity. J. Aircr. 2014, 51, 1311–1322. [Google Scholar] [CrossRef]
- Tinoco, E.N.; Brodersen, O.; Keye, S.; Laflin, K. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1208. [Google Scholar]
- Keye, S.; Mavriplis, D. Summary of Case 5 from Sixth Drag Prediction Workshop: Coupled Aerostructural Simulation. J. Aircr. 2017, 55, 1380–1387. [Google Scholar] [CrossRef]
- Ballmann, J. Experimental Analysis of high Reynolds Number structural Dynamics in ETW. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 841. [Google Scholar]
- Ballmann, J.; Boucke, A.; Chen, B.; Reimer, L.; Reimer, L.; Behr, M.; Behr, M.; Dafnis, A.; Buxel, C.; Buesing, S.; et al. Aero-structural wind tunnel experiments with elastic wing models at high Reynolds numbers (HIRENASD-ASDMAD). In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; p. 882. [Google Scholar]
- Vrchota, P.; Prachař, A. Using wing model deformation for improvement of CFD results of ESWIRP project. CEAS Aeronaut. J. 2018, 9, 361–372. [Google Scholar] [CrossRef]
- Green, J.; Quest, J. A short history of the European Transonic Wind Tunnel ETW. Prog. Aerosp. Sci. 2011, 47, 319–368. [Google Scholar] [CrossRef]
- Edwards, J.W. National transonic facility model and tunnel vibrations. J. Aircr. 2009, 46, 46–52. [Google Scholar] [CrossRef]
- Keye, S.; Brodersen, O. Investigations of Fluid-Structure Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop. In Proceedings of the 31st AIAA Applied Aerodynamics Conference, San Diego, CA, USA, 24–27 June 2013; p. 2509. [Google Scholar]
- Yasue, K.; Sawada, K. Effect of model deformation on aerodynamic coefficients for the AGARD-B wind tunnel model. Trans. Jpn. Soc. Aeronaut. Space Sci. 2011, 54, 163–172. [Google Scholar] [CrossRef]
- Yasue, K.; Sawada, K. CFD-Aided Evaluation of Reynolds Number Scaling Effect Accounting for Static Model Deformation. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 55, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Boutet, J.; Dimitriadis, G. Unsteady Lifting Line Theory Using the Wagner Function for the Aerodynamic and Aeroelastic modelling of 3D Wings. Aerospace 2018, 5, 92. [Google Scholar] [CrossRef]
- Silva, W.A. AEROM: NASA’s Unsteady Aerodynamic and Aeroelastic Reduced-Order modelling Software. Aerospace 2018, 5, 41. [Google Scholar] [CrossRef]
- Kroll, N.; Heinrich, R.; Krueger, W.; Nagel, B. Fluid-structure coupling for aerodynamic analysis and design: A DLR perspective. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 561. [Google Scholar]
- Liu, T.; Burner, A.W.; Jones, T.W.; Barrows, D.A. Photogrammetric techniques for aerospace applications. Prog. Aerosp. Sci. 2012, 54, 1–58. [Google Scholar] [CrossRef]
- Burner, A.W. Model Deformation Measurements at NASA Langley Research Center. In Proceedings of the 81st Fluid Dynamics Panel Symposium on Advanced Aerodynamics Measurement Technology, Seattle, WA, USA, 22–25 September 1997; pp. 1–9. [Google Scholar]
- Buhmann, M.D. Radial basis functions. Acta Numer. 2000, 9, 1–38. [Google Scholar] [CrossRef]
- Rendall, T.C.; Allen, C.B. Efficient mesh motion using radial basis functions with data reduction algorithms. J. Comput. Phys. 2009, 228, 6231–6249. [Google Scholar] [CrossRef]
- Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: Cambridge, UK, 2003; Volume 12. [Google Scholar]
- Heeg, J. Overview and lessons learned from the aeroelastic prediction workshop. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013; p. 1798. [Google Scholar]
- Hassan, D.; Ritter, M. Assessment of the ONERA/DLR Numerical Aeroelastics Prediction Capabilities on the HIRENASD Configuration. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Paris, France, 26–30 June 2011. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, Z. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids. AIAA J. 2000, 38, 2238–2245. [Google Scholar] [CrossRef]
- Reimer, L.; Braun, C.; Chen, B.H.; Ballmann, J. Computational Aeroelastic Design and Analysis of the HIRENASD Wind Tunnel Wing Model and Tests. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Stockholm, Sweden, 18–21 June 2007; pp. 17–20. [Google Scholar]
- Vassberg, J.; Dehaan, M.; Rivers, M.; Wahls, R. Development of a common research model for applied CFD validation studies. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 18–21 August 2008; p. 6919. [Google Scholar]
- Melissa, R. NASA Common Research Model. 2017. Available online: https://commonresearchmodel.larc.nasa.gov/ (accessed on 12 October 2018).
- Rivers, M.B.; Dittberner, A. Experimental investigations of the NASA common research model. J. Aircr. 2014, 51, 1183–1193. [Google Scholar] [CrossRef]
- Rivers, M.; Dittberner, A. Experimental investigations of the nasa common research model in the nasa langley national transonic facility and nasa ames 11-ft transonic wind tunnel. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; p. 1126. [Google Scholar]
- Rivers, M.; Quest, J.; Rudnik, R. Comparison of the NASA Common Research Model European Transonic Wind Tunnel test data to NASA National Transonic Facility test data. CEAS Aeronaut. J. 2018, 9, 307–317. [Google Scholar] [CrossRef]
- Koga, S.; Kohzai, M.; Ueno, M.; Nakakita, K.; Sudani, N. Analysis of NASA Common Research Model Dynamic Data in JAXA Wind Tunnel Tests. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013; p. 495. [Google Scholar]
- Cartieri, A.; Hue, D.; Chanzy, Q.; Atinault, O. Experimental Investigations on the Common Research Model at ONERA-S1MA-Comparison with DPW Numerical Results. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 0964. [Google Scholar]
- The ESWIRP ETW TNA Test Results. 2014. Available online: http://www.eswirp.eu/ETW-TNA-Dissemination.html (accessed on 12 October 2018).
Type | Name | Definition |
---|---|---|
Global | Thin Plate Spline (TPS) | |
Global | Volume Spline (VS) | |
Global | Hardy’s Multiquadric (HMQ) | |
Local | Gaussian (G) | |
Local | Hardy’s Inverse Multiquadric (HIMQ) | |
Compact | Wendland’s C0 (C0) | |
Compact | Wendland’s C2 (C2) | |
Compact | Wendland’s C4 (C4) | |
Compact | Wendland’s C6 (C6) |
Case No. | Ma | Re/107 | αmin/° | αmax/° | q/E/10−7 |
---|---|---|---|---|---|
I | 0.80 | 1.0 | −2.0 | 3.0 | 3.4 |
II | 0.80 | 1.4 | −2.0 | 3.0 | 4.8 |
Case No. | Ma | Re/106 | αmin/° | αmax/° | Rundis | Runforce | q/E/10−7 |
---|---|---|---|---|---|---|---|
I | 0.85 | 5.0 | −2.0 | 5.5 | 182 | 153 | 3.342 |
II | 0.85 | 19.8 | −2.0 | 5.5 | 227 | 226 | 3.342 |
Pseudo Rigid | Elastic | Modelling | |||||||
---|---|---|---|---|---|---|---|---|---|
α/° | CL | CD | Cm | CL | CD | Cm | CL | CD | Cm |
−2 | −0.18205 | 0.02290 | 0.26426 | −0.18005 | 0.02233 | 0.25520 | −0.19336 | 0.02284 | 0.26004 |
−1 | −0.03632 | 0.01870 | 0.20577 | −0.04133 | 0.01882 | 0.20373 | −0.03801 | 0.01878 | 0.20252 |
0 | 0.10560 | 0.01814 | 0.15168 | 0.09332 | 0.01833 | 0.15673 | 0.11390 | 0.01836 | 0.14923 |
1 | 0.25180 | 0.01976 | 0.10116 | 0.22700 | 0.01970 | 0.11394 | 0.26285 | 0.02020 | 0.10151 |
2 | 0.39403 | 0.02371 | 0.05735 | 0.36452 | 0.02309 | 0.07595 | 0.41715 | 0.02505 | 0.05710 |
3 | 0.55556 | 0.03358 | 0.00192 | 0.51631 | 0.03105 | 0.03129 | 0.55103 | 0.03674 | 0.02548 |
4 | 0.62776 | 0.04992 | 0.02517 | 0.60804 | 0.04540 | 0.03195 | 0.62349 | 0.05355 | 0.03688 |
5 | 0.69648 | 0.06829 | 0.03308 | 0.67883 | 0.06267 | 0.04112 | 0.65914 | 0.06717 | 0.04951 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, Y.; Da Ronch, A.; Meng, D. A Fast Correction Method of Model Deformation Effects in Wind Tunnel Tests. Aerospace 2018, 5, 125. https://doi.org/10.3390/aerospace5040125
Sun Y, Wang Y, Da Ronch A, Meng D. A Fast Correction Method of Model Deformation Effects in Wind Tunnel Tests. Aerospace. 2018; 5(4):125. https://doi.org/10.3390/aerospace5040125
Chicago/Turabian StyleSun, Yan, Yuntao Wang, Andrea Da Ronch, and Dehong Meng. 2018. "A Fast Correction Method of Model Deformation Effects in Wind Tunnel Tests" Aerospace 5, no. 4: 125. https://doi.org/10.3390/aerospace5040125
APA StyleSun, Y., Wang, Y., Da Ronch, A., & Meng, D. (2018). A Fast Correction Method of Model Deformation Effects in Wind Tunnel Tests. Aerospace, 5(4), 125. https://doi.org/10.3390/aerospace5040125