Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform
Abstract
1. Introduction
- RDR: This new region was determined to ensure consistent detectability for moving platforms by considering the sensor and quadrotor constraints.
- Vector field for landing: This vector field ensures that the quadrotor remains with the RDR and successfully lands on the platform while considering the mobility constraints of the quadrotor.
- Real-world validation: The proposed landing strategy was empirically verified through extensive outdoor experiments involving dynamically moving platforms.
2. Robust Detectable Region
2.1. Reference Frames and Relative Position Representation
2.2. Visible Region and Marker Detectable Region
- : the visible region, which is the intersection of the union of all FoVs when the gimbal moves in its angle limit and the union of all FoVs when the quadrotor tilts in its pitch angle. These regions are illustrated in Figure 2a.
- : the marker detectable region, where the marker can be detected with high probability. Here, is the angle between the optical axis and normal vector of the fiducial marker; is the angle at which the detection performances of the fiducial marker start to decrease steeply; and denotes the signum function. These regions are shown in Figure 2b.
3. Region-Based Vector Field for Quadrotor Landing Guidance
3.1. Vector Field Design
3.2. Convergence Analysis and Reduced Admissible Set
4. Experimental Results
4.1. Experimental Setup
4.1.1. Hardware Specifications
4.1.2. System Architecture
4.2. Vector Field Parameters
4.3. Simulation Results
4.4. Outdoor Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elmokadem, T.; Savkin, A.V. Towards fully autonomous UAVs: A survey. Sensors 2021, 21, 6223. [Google Scholar] [CrossRef] [PubMed]
- Patrinopoulou, N.; Lappas, V.; Daramouskas, I.; Meimetis, D.; Kostopoulos, V. Autonomy in UAV Civilian Applications. In Autonomous Vehicles-Applications and Perspectives; IntechOpen: London, UK, 2023. [Google Scholar]
- Kanellakis, C.; Nikolakopoulos, G. Survey on computer vision for UAVs: Current developments and trends. J. Intell. Robot. Syst. 2017, 87, 141–168. [Google Scholar] [CrossRef]
- Al-Kaff, A.; Martin, D.; Garcia, F.; de la Escalera, A.; Armingol, J.M. Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst. Appl. 2018, 92, 447–463. [Google Scholar] [CrossRef]
- Xin, L.; Tang, Z.; Gai, W.; Liu, H. Vision-based autonomous landing for the uav: A review. Aerospace 2022, 9, 634. [Google Scholar] [CrossRef]
- Bhargavapuri, M.; Shastry, A.K.; Sinha, H.; Sahoo, S.R.; Kothari, M. Vision-based autonomous tracking and landing of a fully-actuated rotorcraft. Control Eng. Pract. 2019, 89, 113–129. [Google Scholar] [CrossRef]
- Kim, J.; Jung, Y.; Lee, D.; Shim, D.H. Landing control on a mobile platform for multi-copters using an omnidirectional image sensor. J. Intell. Robot. Syst. 2016, 84, 529–541. [Google Scholar] [CrossRef]
- Borowczyk, A.; Nguyen, D.-T.; Nguyen, A.P.-V.; Nguyen, D.Q.; Saussié, D.; Le Ny, J. Autonomous landing of a quadcopter on a high-speed ground vehicle. J. Guid. Control Dyn. 2017, 40, 2378–2385. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Wei, T. Aerodynamic Disturbance Estimation in Quadrotor Landing on Moving Platform via Noise Reduction Extended Disturbance Observer. IEEE Sens. J. 2024, 24, 37566–37574. [Google Scholar] [CrossRef]
- Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis. Comput. 2018, 76, 38–47. [Google Scholar] [CrossRef]
- Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4193–4198. [Google Scholar]
- Romero-Ramire, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Fractal markers: A new approach for long-range marker pose estimation under occlusion. IEEE Access 2019, 7, 169908–169919. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, J.; Li, S.; Wang, Z. Robust Visual Landing Control of Quadrotor on a Moving Platform: A Sampled-Data Approach With Delayed Output and Disturbances. IEEE Trans. Control Syst. Technol. 2024, 32, 2283–2297. [Google Scholar] [CrossRef]
- Maniatopoulos, S.; Panagou, D.; Kyriakopoulos, K.J. Model predictive control for the navigation of a nonholonomic vehicle with field-of-view constraints. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 3967–3972. [Google Scholar]
- Mohamed, I.S.; Allibert, G.; Martinet, P. Sampling-based MPC for constrained vision based control. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3753–3758. [Google Scholar]
- Snobar, F.; Reinhard, J.; Huber, H.; Hoffmann, M.; Stelzig, M.; Vossiek, M.; Graichen, K. FoV-based model predictive object tracking for quadcopters. IFAC-PapersOnLine 2022, 55, 13–18. [Google Scholar] [CrossRef]
- Gonçalves, V.M.; McLaughlin, R.; Pereira, G.A. Precise landing of autonomous aerial vehicles using vector fields. IEEE Robot. Autom. Lett. 2020, 5, 4337–4344. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Y.; Zhang, X.; Jiang, J.; Chen, X. A novel geometric hierarchical approach for dynamic visual servoing of quadrotors. IEEE Trans. Ind. Electron. 2019, 67, 3840–3849. [Google Scholar] [CrossRef]
- Penin, B.; Giordano, P.R.; Chaumette, F. Vision-based reactive planning for aggressive target tracking while avoiding collisions and occlusions. IEEE Robot. Autom. Lett. 2018, 3, 3725–3732. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Y.; Ji, J.; Xu, C.; Gao, F. Visibility-aware trajectory optimization with application to aerial tracking. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5249–5256. [Google Scholar]
- Kallwies, J.; Forkel, B.; Wuensche, H.-J. Determining and improving the localization accuracy of AprilTag detection. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8288–8294. [Google Scholar]
- Kalaitzakis, M.; Cain, B.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. J. Intell. Robot. Syst. 2021, 101, 71. [Google Scholar] [CrossRef]
- Jurado-Rodriguez, D.; Muñoz-Salinas, R.; Garrido-Jurado, S.; Medina-Carnicer, R. Planar fiducial markers: A comparative study. Virtual Real. 2023, 27, 1733–1749. [Google Scholar] [CrossRef]
- Lawrence, D.A.; Frew, E.W.; Pisano, W.J. Lyapunov vector fields for autonomous unmanned aircraft flight control. J. Guid. Control Dyn. 2008, 31, 1220–1229. [Google Scholar] [CrossRef]
- Anikin, D.; Ryabinov, A.; Saveliev, A.; Semenov, A. Autonomous landing algorithm for UAV on a mobile robotic platform with a fractal marker. In Proceedings of the International Conference on Interactive Collaborative Robotics, Baku, Azerbaijan, 25–29 October 2023; pp. 357–368. [Google Scholar]
- Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 6235–6240. [Google Scholar]
- Yi, J.; Lee, D.; Park, W.; Byun, W.; Huh, S.; Nam, W. Autonomous Control of UAV for Proximity Tracking of Ground Vehicles with AprilTag and Feedforward Control. In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland, 6–9 June 2023; pp. 349–353. [Google Scholar]
System | Domain | Range |
---|---|---|
Quadrotor | Roll/Pitch | |
Thrust | ||
Gimbal | Roll | |
Tilt | ||
Camera | Vertical FoV Horizontal FoV |
Parameters | Values |
---|---|
m | |
m | |
0.5 m/s | |
1.028 m/s | |
2.622 m/s2 | |
5.601 m/s2 | |
1 | m/s2 |
Platform Velocity Profile | Trials for Each Methods | Methods | Landing Success Rate w/o Delay [%] | Landing Success Rate w/Delay [%] |
---|---|---|---|---|
Scenario 1 | Baseline | 100 | 100 | |
Proposed | 100 | 100 | ||
Scenario 2 | Baseline | 60 | 0 | |
Proposed | 100 | 100 | ||
Scenario 3 | Baseline | 0 | 0 | |
Proposed | 100 | 100 |
Platform Speed | Trials | Distance Error of Landing [m, Mean ± Std] | Detection Success Rate [%, Mean ± Std] |
---|---|---|---|
(stationary) | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, W.; Huh, S.; Jang, H.; Yu, S.; Lim, S.; Lee, S.; Nam, W. Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform. Aerospace 2025, 12, 590. https://doi.org/10.3390/aerospace12070590
Byun W, Huh S, Jang H, Yu S, Lim S, Lee S, Nam W. Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform. Aerospace. 2025; 12(7):590. https://doi.org/10.3390/aerospace12070590
Chicago/Turabian StyleByun, Woohyun, Soobin Huh, Hyeokjae Jang, Suhyeong Yu, Sungwon Lim, Seokwon Lee, and Woochul Nam. 2025. "Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform" Aerospace 12, no. 7: 590. https://doi.org/10.3390/aerospace12070590
APA StyleByun, W., Huh, S., Jang, H., Yu, S., Lim, S., Lee, S., & Nam, W. (2025). Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform. Aerospace, 12(7), 590. https://doi.org/10.3390/aerospace12070590