Quasi-One-Dimensional Thermodynamic Analysis of Radially Expanding Laser-Supported Detonations
Abstract
1. Introduction
2. Numerical Methods
2.1. Governing Equations
2.2. Heating Rate Distribution
2.3. Computational Domain
2.4. Changes in Gas Constant and the Specific Heat Ratio
2.5. Hugoniot Analysis for the Quasi-One-Dimensional Control Volume
3. Results and Discussion
3.1. Flow Field
3.2. Hugoniot Analysis
3.3. Effect of the Varying Relationship Between Heating and Propagation Velocity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | cross-sectional area of control volume, m2 |
E | flux vector |
e | internal energy, J/kg |
F | flux vector |
H | flux vector |
l | axial length of heating region, mm |
p | pressure, atm |
pVN | pressure at von Neumann point, atm |
Q | conserved vector |
q | heating rate, W/m3 |
r | radial position, m |
S | local laser intensity, W/m2 |
Speak | laser intensity on axis, W/m2 |
Ui | propagation velocity of ionization front, m/s |
u | axial velocity, m/s |
V | control volume |
v | radial velocity, m/s |
W | source term vector |
z | axial position, m |
zi | axial position of an ionization front, where is the front of the heating region, m |
β | exponential coefficient for propagation velocity of ionization front Ui |
η | conversion efficiency of laser energy to fluid enthalpy |
specific heat ratio | |
ρ | density, kg/m3 |
ratio of cross-sectional area A2/A1 | |
θ | local angle of ionization wavefront, rad |
Subscripts
i | ionization front |
1 | front of the control volume, which is the initial state of the atmosphere in front of the shock wave of LSD |
2 | end of the control volume, which is end of the heating region |
References
- Komurasaki, K.; Wang, B. Laser Propulsion; John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- Mori, K.; Oda, Y.; Masayuki, T.; Shimamura, K. Beamed-Mobility Engineering: Wireless-Power, Beaming to Aircraft, Spacecraft and Rockets; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Myrabo, L.N. Brief History of the Lightcraft Technology Demonstrator (LTD) Project. AIP Conf. Proc. 2003, 664, 49–60. [Google Scholar]
- Kare, J.T. Laser-powered heat exchanger rocket for ground-to-orbit launch. J. Propul. Power 1995, 11, 535–543. [Google Scholar] [CrossRef]
- Raizer, Y.P. Laser-Induced Discharge Phenomena; Consultants Bureau: New York, NY, USA, 1977. [Google Scholar]
- Katsurayama, H.; Komurasaki, K.; Momozawa, A.; Arakawa, Y. Numerical and Engine Cycle Analyses of a Pulse Laser Ramjet Vehicle. Trans. JSASS 2003, 1, 9–16. [Google Scholar] [CrossRef]
- Mori, K.; Komurasaki, K.; Arakawa, Y. Nozzle Scale Optimum for the Impulse Generation in a Laser Pulsejet. J. Spacecr. Rocket. 2004, 41, 887–889. [Google Scholar] [CrossRef]
- Katsurayama, H.; Komurasaki, K.; Hirooka, Y.; Mori, K.; Arakawa, Y. Numerical Analyses of Exhaust and Refill Processes of a Laser Pulse Jet. J. Propul. Power 2008, 24, 999–1006. [Google Scholar] [CrossRef]
- Wang, B.; Han, T.; Michigami, K.; Komurasaki, K.; Arakawa, Y. Thrust Measurement of Laser Detonation Thruster with a Pulsed Glass Laser. AIP Conf. Proc. 2011, 1402, 282–289. [Google Scholar]
- Wang, B.; Michigami, K.; Komurasaki, K. Thrust Measurement for Laser-Detonation Propulsion with a Solid-State Laser. J. Propul. Power 2013, 29, 276–278. [Google Scholar] [CrossRef]
- Katsurayama, H.; Komurasaki, K.; Arakawa, Y. A preliminary study of pulse-laser powered orbital launcher. Acta Astronaut. 2009, 65, 1032–1041. [Google Scholar] [CrossRef]
- Lee, J.H. The Detonation Phenomenon; Cambridge University Press: Cambridge, UK, 2008; pp. 75–97. [Google Scholar]
- Ramsden, S.A.; Davies, W.E.R. Radiation Scattered from the Plasma Produced using a Focused Ruby Laser Beam. Phys. Rev. Lett. 1964, 13, 227–229. [Google Scholar] [CrossRef]
- Raizer, Y.P. Heating of a Gas by Powerful Light Pulse. Sov. Phys. JETP 1965, 21, 1009–1017. [Google Scholar]
- Shimamura, K.; Matsui, K.; Ofosu, J.A.; Yokota, I.; Komurasaki, K. Mode transition of plasma expansion for laser induced breakdown in Air. Appl. Phys. Lett. 2017, 110, 134104. [Google Scholar] [CrossRef]
- Shimamura, K.; Ofosu, J.A.; Fukunari, M.; Komurasaki, K. A weak overdriven detonation mode for laser-produced plasma. In Proceedings of the Abstracts ICOPS, San Francisco, CA, USA, 16–21 June 2013. [Google Scholar]
- Matsui, K.; Shimano, T.; Ofosu, J.A.; Komurasaki, K.; Schoenherr, T.; Koizumi, H. Accurate propagation velocity measurement of laser supported detonation waves. Vacuum 2017, 136, 171–176. [Google Scholar] [CrossRef]
- Matsui, K.; Komurasaki, K.; Kanda, K.; Koizumi, H. Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air. Aerospace 2024, 11, 327. [Google Scholar] [CrossRef]
- Takeda, R.; Kanda, K.; Matsui, K.; Komurasaki, K.; Koizumi, H. Hugoniot Analysis of Laser Supported Detonation Using Measured Blast Wave Energy Efficiency. J. IAPS 2020, 28, 34–40. [Google Scholar]
- Arai, T.; Matsui, K.; Kitagawa, K. Construction of the Calculation Model to Clarify the Energy Conversion Ratio in the Entire Area of an LSD Wave. J. Evol. Space Act. 2024, 2, 191. [Google Scholar]
- Sugamura, K.; Kato, K.; Komurasaki, K.; Sekine, H.; Itakura, Y.; Koizumi, H. Hugoniot Relation for a Bow-Shaped Detonation Wave Generated in RP Laser Propulsion. Aerospace 2023, 10, 102. [Google Scholar] [CrossRef]
- Shimada, Y.; Shibata, T.; Yamaguchi, T.; Oda, Y.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Sakamoto, K.; Komurasaki, K.; Arakawa, Y. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube. AIP Conf. Proc. 2010, 1230, 366–376. [Google Scholar]
- Shima, E. Simple Compressible CFD Solvers’ Story. J. Jpn. Soc. Fluid Mech. Nagare 2015, 34, 67–79. [Google Scholar]
- Mori, K.; Komurasaki, K.; Arakawa, Y. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. J. Appl. Phys. 2004, 95, 5979–5983. [Google Scholar] [CrossRef]
- Wang, B.; Komurasaki, K.; Yamaguchi, T.; Shimamura, K.; Arakawa, Y. Energy conversion in a glass-laser-induced blast wave in air. J. Appl. Phys. 2010, 108, 124911. [Google Scholar] [CrossRef]
- Shimamura, K.; Komurasaki, K.; Ofosu, J.A.; Koizumi, H. Precursor Ionization and Propagation Velocity of a Laser-Absorption Wave in 1.053 and 10.6-µm Wavelength Laser Radiation. IEEE Trans. Plasma Sci. 2014, 42, 3121–3128. [Google Scholar] [CrossRef]
- Shimano, T.; Ofosu, J.A.; Matsui, K.; Komurasaki, K.; Koizumi, H. Laser-Induced Discharge Propagation Velocity in Helium and Argon Gases. Trans. JSASS 2017, 60, 378–381. [Google Scholar] [CrossRef]
- Ofosu, J.A.; Matsui, K.; Kanda, K.; Komurasaki, K.; Koizumi, H. Applicability of 1-D Laser-Induced Discharge Model to Discharges Extending in Large Beam Diameters: A Case Study in Helium Gas. Front. Appl. Plasma Technol. 2018, 11, 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itakura, Y.; Kato, K.; Komurasaki, K.; Sekine, H.; Koizumi, H. Quasi-One-Dimensional Thermodynamic Analysis of Radially Expanding Laser-Supported Detonations. Aerospace 2025, 12, 584. https://doi.org/10.3390/aerospace12070584
Itakura Y, Kato K, Komurasaki K, Sekine H, Koizumi H. Quasi-One-Dimensional Thermodynamic Analysis of Radially Expanding Laser-Supported Detonations. Aerospace. 2025; 12(7):584. https://doi.org/10.3390/aerospace12070584
Chicago/Turabian StyleItakura, Yuma, Kyohei Kato, Kimiya Komurasaki, Hokuto Sekine, and Hiroyuki Koizumi. 2025. "Quasi-One-Dimensional Thermodynamic Analysis of Radially Expanding Laser-Supported Detonations" Aerospace 12, no. 7: 584. https://doi.org/10.3390/aerospace12070584
APA StyleItakura, Y., Kato, K., Komurasaki, K., Sekine, H., & Koizumi, H. (2025). Quasi-One-Dimensional Thermodynamic Analysis of Radially Expanding Laser-Supported Detonations. Aerospace, 12(7), 584. https://doi.org/10.3390/aerospace12070584