Day–Night Energy-Constrained Path Planning for Stratospheric Airships: A Hybrid Level-Set Particle Swarm Optimization (LS-PSO) Framework in Dynamic Flows
Abstract
:1. Introduction
2. Problem Formulation
3. Methodology
- Velocity Sequence Optimization and feasibility verification: we use PSO to search for candidate velocities in the velocity domain and adopt the level-set method to evolve the reachable set in the wind field to validate path reachability. The level-set evolution results are used to quantify energy consumption, arrival time, and constraint violations, guiding the fitness evaluation of the particle swarm. Through iterative optimization, the method identifies an optimal velocity sequence that satisfies nighttime energy constraints while minimizing propulsion energy consumption. A detailed explanation is shown in Section 3.1.
- Optimal path generation: With the optimized velocity sequence, the final space-domain path is computed using the backward evolution of the LSM. Further details are described in Section 3.2.
3.1. Velocity Sequence Optimization and Reachability Verification
3.2. Optimal Path Generation
3.3. Algorithm Implementation and Computational Optimization
3.3.1. Algorithm Implementation
- Initialization: The mission duration is discretized into intervals with T steps, and particles are generated with random velocity sequences .
- Wind Field Interpolation: The wind field data of flight time and space is interpolated into a structured spatiotemporal grid using the spline interpolation algorithm.
- Forward Level-Set Evolution: Level-set forward evolution is used to numerically propagate, according to Equation (7), the reachable set of each candidate particle velocity sequence, terminating when the target enters the reachable front or the task duration expires. The arrival time of the velocity sequence and the minimum distance from the target point to the reachable set are provided before arrival for subsequent fitness function calculations.
- Fitness Evaluation: The energy consumption, arrival time, and constraint violation penalty corresponding to the velocity sequence of each particle based on the forward evolution of the level set are calculated and aggregates into the fitness function Equation (12) to guide the update of the optimal position for individuals and groups.
- Sociocognitive Updates: The velocities and positions of all particles are updated based on historical information, as governed by Equation (13).
- Convergence: Iterations continue until convergence or the maximum number of iterations is reached. Then the optimal velocity sequence is found.
- Path Reconstruction: The optimal path is reconstructed by tracing the backward gradient flow derived by by Equation (14) using a discretized form.
- We set = 24 h for the day–night mission path planning, and ΔT = 1 h, the same as the time interval of most forecast systems.
3.3.2. Computational Complexity
3.3.3. Multiresolution Grid Adaptation Strategy
4. Applications
4.1. Experimental Configuration
4.2. Benchmark Analysis in Four-Gyre Flow
4.3. Cross-Day–Night Path Planning in ERA5 Reanalysis Wind Field
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parsa, A.; Monfared, S.B.; Kalhor, A. Backstepping Control based on Sliding Mode for Station-Keeping of Stratospheric Airship. In Proceedings of the 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, 23–25 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 554–559. [Google Scholar] [CrossRef]
- Liao, L.; Pasternak, I. A review of airship structural research and development. Prog. Aerosp. Sci. 2009, 45, 83–96. [Google Scholar] [CrossRef]
- Hepp, A.F.; Kumta, P.N.; Velikokhatnyi, O.I.; Datta, M.K. Batteries for aeronautics and space exploration: Recent developments and future prospects. In Lithium-Sulfur Batteries; Elsevier: Amsterdam, The Netherlands, 2022; pp. 531–595. [Google Scholar] [CrossRef]
- Wu, J.; Fang, X.; Wang, Z.; Hou, Z.; Ma, Z.; Zhang, H.; Dai, Q.; Xu, Y. Thermal modeling of stratospheric airships. Prog. Aerosp. Sci. 2015, 75, 26–37. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, S.; Miao, J.; Shang, H.; Cui, Y.; Lu, Y. Autonomous Trajectory Planning Method for Stratospheric Airship Regional Station-Keeping Based on Deep Reinforcement Learning. Aerospace 2024, 11, 753. [Google Scholar] [CrossRef]
- Shaw, J.A.; Nugent, P.W.; Kaufman, N.A.; Pust, N.J.; Mikes, D.; Knierim, C.; Faulconer, N.; Larimer, R.M.; DesJardins, A.C.; Knighton, W.B. Multispectral imaging systems on tethered balloons for optical remote sensing education and research. J. Appl. Remote Sens. 2012, 6, 063613. [Google Scholar] [CrossRef]
- Ning, X.; Liu, P.; Pan, Z. The Mechanical Characteristics and Experimental Study of the Stratospheric Airship. J. Appl. Math. Phys. 2021, 09, 183–196. [Google Scholar] [CrossRef]
- Ramesh, S.S.; Lim, K.M.; Lee, H.P.; Khoo, B.C. Reduced-Order Modeling of Stratospheric Winds and Its Application in High-Altitude Balloon Trajectory Simulations. J. Appl. Meteorol. Climatol. 2017, 56, 1753–1766. [Google Scholar] [CrossRef]
- Yang, X. Renewable power system simulation and endurance analysis for stratospheric airships. Renew. Energy 2017, 113, 1070–1076. [Google Scholar] [CrossRef]
- Song, K.; Li, Z.; Zhang, Y.; Wang, X.; Xu, G.; Zhang, H. A rule-based online energy management strategy for long-endurance stratospheric airships. Aerosp. Sci. Technol. 2024, 151, 109266. [Google Scholar] [CrossRef]
- Shan, C.; Lv, M.; Sun, K.; Gao, J. Analysis of energy system configuration and energy balance for stratospheric airship based on position energy storage strategy. Aerosp. Sci. Technol. 2020, 101, 105844. [Google Scholar] [CrossRef]
- D’Oliveira, F.A.; Melo, F.C.L.D.; Devezas, T.C. High-Altitude Platforms—Present Situation and Technology Trends. J. Aerosp. Technol. Manag. 2016, 8, 249–262. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, B.; Zhang, L.; Xu, Y.; Yang, K. Spatial path analysis for high-altitude solar-powered airship with maximum net energy. Aerosp. Sci. Technol. 2021, 117, 106922. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Jiang, Y.; Du, H.; Zhu, W.; Lv, M. Stratospheric airship endurance strategy analysis based on energy optimization. Aerosp. Sci. Technol. 2020, 100, 105794. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, P.; Wu, Y.; Lin, Q.; Jing, Y.; Yu, D. Trajectory planning with minimum energy consumption for multi-target regions autonomous cruise of stratospheric airship in wind field. Aerosp. Syst. 2023, 6, 521–529. [Google Scholar] [CrossRef]
- Zhang, Z.; Wan, Y.; Wang, Y.; Guan, X.; Ren, W.; Li, G. Improved hybrid A* path planning method for spherical mobile robot based on pendulum. Int. J. Adv. Robot. Syst. 2021, 18, 1729881421992958. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, K.; Chen, T.; Zheng, Z.; Zhu, M. Integration of path planning and following control for the stratospheric airship with forecasted wind field data. ISA Trans. 2023, 143, 115–130. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, K.; Chen, T.; Zhang, Y.; Zheng, Z. Trajectory planning of stratospheric airship for station-keeping mission based on improved rapidly exploring random tree. Adv. Space Res. 2024, 73, 992–1005. [Google Scholar] [CrossRef]
- Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.-H. Neural RRT*: Learning-Based Optimal Path Planning. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1748–1758. [Google Scholar] [CrossRef]
- Mitra, A.; Talukder, A.; Willets, J.; Atajanova, L.; Ganesh, R.; Sha, W. Enhancing Cargo Transportation by Reducing Airship Operating Costs; 2024. Available online: https://ntrs.nasa.gov/api/citations/20240012628/downloads/NASA-TM-20240012628.pdf (accessed on 17 March 2025).
- Hou, J.; Zhu, M.; Zheng, B.; Guo, X.; Ou, J. Trajectory Planning Based On Continuous Decision Deep Reinforcement Learning for Stratospheric Airship. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1508–1513. [Google Scholar] [CrossRef]
- Hu, S.; Wang, B.; Zhang, A.; Deng, Y. Genetic Algorithm and Greedy Strategy-Based Multi-Mission-Point Route Planning for Heavy-Duty Semi-Rigid Airship. Sensors 2022, 22, 4954. [Google Scholar] [CrossRef]
- Zeng, Z.; Sammut, K.; Lian, L.; He, F.; Lammas, A.; Tang, Y. A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robot. Auton. Syst. 2016, 82, 61–72. [Google Scholar] [CrossRef]
- Lolla, T.; Ueckermann, M.P.; Yigit, K.; Haley, P.J.; Lermusiaux, P.F.J. Path planning in time dependent flow fields using level set methods. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–18 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 166–173. [Google Scholar]
- Lolla, T.; Haley, P.J.; Lermusiaux, P.F.J. Time-optimal path planning in dynamic flows using level set equations: Realistic applications. Ocean Dyn. 2014, 64, 1399–1417. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Hu, W.; Cao, C. Time and Risk Optimal Path Planning for Surface Vehicle via Level Set in Dynamic Environment. IEEE Trans. Ind. Inform. 2024, 20, 8639–8649. [Google Scholar] [CrossRef]
- Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, 7, 211. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Du, L. Path Planning Technologies for Autonomous Underwater Vehicles-A Review. IEEE Access 2019, 7, 9745–9768. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, H.; Tang, Q.; Qin, Z.; Yu, Y. Energy-Efficient Route Planning Method for Ships Based on Level Set. Sensors 2025, 25, 381. [Google Scholar] [CrossRef]
- Tang, J.; Xie, W.; Zhou, P.; Yang, H.; Zhang, T.; Wang, Q. Multidisciplinary Optimization and Analysis of Stratospheric Airships Powered by Solar Arrays. Aerospace 2023, 10, 43. [Google Scholar] [CrossRef]
- Yang, X.; Liu, D. Conceptual Design of Stratospheric Airships Focusing on Energy Balance. J. Aerosp. Eng. 2018, 31, 04017094. [Google Scholar] [CrossRef]
- Mitchell, I.M. The Flexible, Extensible and Efficient Toolbox of Level Set Methods. J. Sci. Comput. 2008, 35, 300–329. [Google Scholar] [CrossRef]
- Mitchell, I.M.; Templeton, J.A. A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems. In Hybrid Systems: Computation and Control; Morari, M., Thiele, L., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3414, pp. 480–494. [Google Scholar] [CrossRef]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM Trans. Math. Softw. 2014, 41, 1–37. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Schnitzler, B.; Drouin, A.; Moschetta, J.-M.; Delahaye, D. General Extremal Field Method for Time-Optimal Trajectory Planning in Flow Fields. IEEE Control Syst. Lett. 2023, 7, 2605–2610. [Google Scholar] [CrossRef]
- Kularatne, D.; Bhattacharya, S.; Ani Hsieh, M. Time and Energy Optimal Path Planning in General Flows. In Robotics: Science and Systems XII; Robotics: Science and Systems Foundation: Los Altos, CA, USA, 2016. [Google Scholar] [CrossRef]
- Greatbatch, R.J.; Nadiga, B.T. Four-Gyre Circulation in a Barotropic Model with Double-Gyre Wind Forcing. J. Phys. Oceanogr. 2000, 30, 1461–1471. [Google Scholar] [CrossRef]
Metric | GPOPS-II | LS-PSO-base | LS-PSO-MRG |
---|---|---|---|
Energy (kWh) | 23.12 | 22.65 | 22.90 |
Time (h) | 24 | 24 | 24 |
Night energy (kWh) | 3.20 | 3.28 | 3.15 |
Max. lateral deviation (km) | \ | 30.2 | 31.6 |
Comp. time (h) | 0.02 | 1.08 | 0.52 |
Path | TNC | ENC (LS-PSO) | TC (LS-PSO) | EC (LS-PSO) | ETC (LS-PSO) |
---|---|---|---|---|---|
Method | LSM | LS-PSO | LS-PSO | LS-PSO | LS-PSO |
Grid Resolution | 20 km × 20 km | 3-MRG | 3-MRG | 3-MRG | 3-MRG |
Parameters | - | [1, 0, 0, 1] | [0, 1, 1, 1] | [1, 0, 1, 1] | [1, 1, 1, 1] |
Path Color | red | yellow | purple | green | pink |
Metric | TNC | ENC | TC | EC | ETC |
---|---|---|---|---|---|
Energy Cons. (kWh) | 68.96 | 25.85 | 47.16 | 24.91 | 30.22 |
Time Cons. (h) | 15.40 | 24 | 18.51 | 24 | 21.38 |
Night energy Cons. (kWh) | 37.63 | 14.52 | 13.26 | 10.07 | 11.43 |
Path length (km) | 918.2324 | 950.3833 | 937.0289 | 950.9099 | 945.0203 |
Comp. time (h) | 0.02 | 0.55 | 0.43 | 0.52 | 0.46 |
Metric | TNC | ENC | TC | EC | ETC |
---|---|---|---|---|---|
Energy Cons. (kWh) | 82.44 | 51.56 | 64.89 | 53.88 | 55.68 |
Time Cons. (h) | 18.41 | 24 | 21.78 | 24 | 23.21 |
Night energy Cons. (kWh) | 49.25 | 16.32 | 13.25 | 13.18 | 13.23 |
Path length (km) | 494.87 | 557.45 | 564.80 | 584.31 | 577.20 |
Comp. time (h) | 0.03 | 0.56 | 0.62 | 0.57 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, X.; Miao, J.; Feng, Y.; Bian, C. Day–Night Energy-Constrained Path Planning for Stratospheric Airships: A Hybrid Level-Set Particle Swarm Optimization (LS-PSO) Framework in Dynamic Flows. Aerospace 2025, 12, 417. https://doi.org/10.3390/aerospace12050417
Liu C, Li X, Miao J, Feng Y, Bian C. Day–Night Energy-Constrained Path Planning for Stratospheric Airships: A Hybrid Level-Set Particle Swarm Optimization (LS-PSO) Framework in Dynamic Flows. Aerospace. 2025; 12(5):417. https://doi.org/10.3390/aerospace12050417
Chicago/Turabian StyleLiu, Cheng, Xiang Li, Jinggang Miao, Yu Feng, and Chunjiang Bian. 2025. "Day–Night Energy-Constrained Path Planning for Stratospheric Airships: A Hybrid Level-Set Particle Swarm Optimization (LS-PSO) Framework in Dynamic Flows" Aerospace 12, no. 5: 417. https://doi.org/10.3390/aerospace12050417
APA StyleLiu, C., Li, X., Miao, J., Feng, Y., & Bian, C. (2025). Day–Night Energy-Constrained Path Planning for Stratospheric Airships: A Hybrid Level-Set Particle Swarm Optimization (LS-PSO) Framework in Dynamic Flows. Aerospace, 12(5), 417. https://doi.org/10.3390/aerospace12050417