Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations
Abstract
:1. Introduction
2. Deep Learning Approaches
2.1. Convolutional Neural Network (CNN)
2.2. Long Short-Term Memory (LSTM) Neural Network
2.3. Architecture of the Hybrid ROM
3. Test Case: NASA Common Research Model (CRM)
3.1. Computational Setup
3.2. Validation of Computational Setup
3.3. Implementation of Eigenmode-Based Deformations
3.4. CFD-Based Data Set Generation
4. Application of the Hybrid ROM
4.1. Data Preprocessing
4.2. Training of the Hybrid ROM
4.3. Performance Evaluation
4.4. Computational Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sator, F.; Timme, S. Delayed Detached-Eddy Simulation of Shock-Buffet on Half Wing-Body Configuration. AIAA J. 2016, 55, 1230–1240. [Google Scholar] [CrossRef]
- Iovnovich, M.; Raveh, D.E. Numerical Study of Shock Buffet on Three-Dimensional Wings. AIAA J. 2014, 53, 449–463. [Google Scholar] [CrossRef]
- Paladini, E.; Dandois, J.; Sipp, D.; Robinet, J. Analysis and Comparison of Transonic Buffet Phenomenon over Several Three-Dimensional Wings. AIAA J. 2018, 57, 1–18. [Google Scholar] [CrossRef]
- Koike, S.; Ueno, M.; Nakakita, K.; Hashimoto, A. Unsteady Pressure Measurements of Transonic Buffet on the NASA Common Research Model. In Proceedings of the 34th AIAA Aplied Aerodynamic Conference, AIAA-2016-4044, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. Data-Driven Modeling for Unsteady Aerodynamics and Aeroelasticity. Prog. Aerosp. Sci. 2021, 125, 110725. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W.; Yin, M. Novel Wiener Models with a Time-Delayed Nonlinear Block and Their Identification. Nonlinear Dyn. 2016, 85, 2389–2405. [Google Scholar] [CrossRef]
- Silva, W. Application of Nonlinear Systems Theory to Transonic Unsteady Aerodynamic Responses. J. Aircr. 1993, 30, 660–668. [Google Scholar] [CrossRef]
- Glaz, B.; Liu, L.; Friedmann, P.P. Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework. AIAA J. 2010, 48, 2418–2429. [Google Scholar] [CrossRef]
- Mannarino, A.; Mantegazza, P. Nonlinear Aeroelastic Reduced Order Modeling by Recurrent Neural Networks. J. Fluids Struct. 2014, 48, 103–121. [Google Scholar] [CrossRef]
- Zhang, W.; Kou, J.; Wang, Z. Nonlinear Aerodynamic Reduced-Order Model for Limit-Cycle Oscillation and Flutter. AIAA J. 2016, 54, 3304–3311. [Google Scholar] [CrossRef]
- Winter, M.; Breitsamter, C. Reduced-Order Modeling of Unsteady Aerodynamic Loads Using Radial Basis Function Neural Networks. In Proceedings of the 63rd Deutscher Luft- und Raumfahrtkongress, DGLR, Augsburg, Germany, 16–18 September 2014. [Google Scholar]
- Winter, M.; Breitsamter, C. Nonlinear Identification via Connected Neural Networks for Unsteady Aerodynamic Analysis. Aerosp. Sci. Technol. 2018, 77, 802–818. [Google Scholar] [CrossRef]
- Zahn, R.; Winter, M.; Zieher, M.; Breitsamter, C. Application of a Long Short-Term Memory Neural Network for Modeling Transonic Buffet Aerodynamics. Aerosp. Sci. Technol. 2021, 113, 106652. [Google Scholar] [CrossRef]
- Timme, S. Global Instability of Wing Shock-Buffet Onset. J. Fluid Mech. 2020, 885, A37. [Google Scholar] [CrossRef]
- Ohmichi, Y.; Ishida, T.; Hashimoto, T. Modal Decomposition Analysis of Three-Dimensional Transonic Buffet Phenomenon on a Swept Wing. AIAA J. 2018, 56, 3938–3950. [Google Scholar] [CrossRef]
- Chandon, M.; Levinski, O.; Altaf, A.; Carrese, R.; Marzocca, P. Aircraft Transonic Buffet Load Prediction using Artificial Neural Networks. In Proceedings of the 59rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2019-0763, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Afshar, Y.; Bhatnagar, S.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks. Phys. Fluids 2019, 64, 525–545. [Google Scholar] [CrossRef]
- Sekar, V.; Jiang, Q.; Shu, C.; Khoo, B.C. Fast Flow Field Prediction over Airfoils Using Deep Learning Approach. Phys. Fluids 2019, 31, 057103. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Wang, Z.; Kong, C. An Efficient Deep Learning Framework to Reconstruct the Flow Field Sequences of the Supersonic Cascade Channel. Phys. Fluids 2021, 33, 056106. [Google Scholar] [CrossRef]
- Hasegawa, K.; Fukami, K.; Muarata, T.; Fukagata, K. Machine-Learning-Based Reduced-Order Modeling for Unsteady Flows Around Bluff Bodies of Various Shapes. Theor. Comput. Fluid Dyn. 2020, 34, 367–383. [Google Scholar] [CrossRef]
- Nakamura, T.; Fukami, K.; Hasegawa, K.; Nabae, Y.; Fukagata, K. Convolutional Neural Network and Long Short-Term Memory Based Reduced Order Surrogate for Minimal Turbulent Channel Flow. Phys. Fluids 2021, 33, 025116. [Google Scholar] [CrossRef]
- Liu, Z.; Han, R.; Zhang, M.; Zhang, Y.; Zhou, H.; Wang, G.; Chen, G. An Enhanced Hybrid Deep Neural Network Reduced-Order Model For Transonic Buffet Flow Prediction. Aerosp. Sci. Technol. 2022, 126, 107636. [Google Scholar] [CrossRef]
- Klimmek, T. Parametric Set-up of a Structural Model for FERMAT Configuration Aeroelastic and Loads Analysis. J. Aeroelast. Struct. Dyn. 2014, 3, 31–49. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-2620-3561-3. [Google Scholar]
- Rosov, V.; Breitsamter, C. Data-Driven Prediction of Unsteady Pressure Distributions Based on Deep Learning. J. Fluids Struct. 2021, 104, 103316. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Hochreiter, S.; Bengio, Y.; Fransconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies. In A Field Guide to Dynamical Recurrent Neural Networks; IEEE: Piscataway, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Werbos, P.J. Backpropagation Through Time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; Volume 12. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Ehrle, M.; Waldmann, A.; Lutz, T.; Krämer, E. Simulation of Transonic Buffet with an Automated Zone DES Approach. CEAS Aeronaut. J. 2020, 11, 1025–1036. [Google Scholar] [CrossRef]
- Lutz, T.; Gansel, P.P. Going for Experimental and Numerical Unsteady Wake Analyses Combined with Wall Interference Assessment by Using the NASA CRM-Model in ETW. In Proceedings of the 51st AIAA Aerospace Sciences Meeting, AIAA-2013-871, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar] [CrossRef]
- Spalart, P. Strategies for Turbulence Modeling and Simulations. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Togiti, V.; Eisfeld, B.; Brodersen, O. Turbulence Model Study For the Flow Around the NASA Common Research Model. J. Aircr. 2014, 54, 1331–1343. [Google Scholar] [CrossRef]
- Illi, S.; Fingskes, C.; Lutz, C.; Krämer, E. Transonic Tail Buffet Simulations for the Common Research Model. In Proceedings of the 31st AIAA Applied Aerodynamics Conference AIAA 2013-2510, San Diego, CA, USA, 24–27 June 2013. [Google Scholar] [CrossRef]
- Winter, M. Nonlinear Aerodynamic Reduced-Order Modeling Using Neuro-Fuzzy Approaches. Ph.D. Thesis, Technical University of Munich, Garching, Germany, 2021. [Google Scholar]
- Winter, M.; Breitsamter, C. Application of Unsteady Aerodynamic Reduced-Order Modeling Techniques to a Complex Configuration. In Proceedings of the 17th International Forum on Aeroelasticity and Structural Dynamics, Como, Italy, 25–28 June 2017. IFASD Paper 2017-217. [Google Scholar]
- Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-662-04323-3. [Google Scholar]
Quantity | Symbol | Value |
---|---|---|
Wing reference area | 0.280 m2 | |
Wing span | b | 1.586 m |
Mean aerodynamic chord | 0.189 m | |
Aspect ratio | 9 | |
Quarter-chord sweep angle | 35° |
Hybrid ROM | ||||||
---|---|---|---|---|---|---|
Case | n.o.p. | URANS | Training Data Set | Initial | Training | Total |
symmetric | 1 | 10,000 | 19,200 | 4800 | 40 | 24,040 |
symmetric | 16 | 160,000 | 19,200 | 4800 | 640 | 24,640 |
asymmetric | 1 | 20,000 | 76,800 | 11,520 | 60 | 88,380 |
asymmetric | 16 | 320,000 | 76,800 | 11,520 | 960 | 89,280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahn, R.; Zieher, M.; Breitsamter, C. Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations. Aerospace 2025, 12, 415. https://doi.org/10.3390/aerospace12050415
Zahn R, Zieher M, Breitsamter C. Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations. Aerospace. 2025; 12(5):415. https://doi.org/10.3390/aerospace12050415
Chicago/Turabian StyleZahn, Rebecca, Moritz Zieher, and Christian Breitsamter. 2025. "Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations" Aerospace 12, no. 5: 415. https://doi.org/10.3390/aerospace12050415
APA StyleZahn, R., Zieher, M., & Breitsamter, C. (2025). Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations. Aerospace, 12(5), 415. https://doi.org/10.3390/aerospace12050415