The Data-Driven Performance Prediction of Lattice Structures: The State-of-the-Art in Properties, Future Trends, and Challenges
Abstract
:1. Introduction
2. Lattice Structures and Functional Properties
2.1. Types of Lattice Structures
2.1.1. Strut-Based Lattice Structures
2.1.2. Triply Periodic Minimal Surface Lattice Structures
2.1.3. Shell Lattice Structures
2.2. Lattice Structure Functionality
2.3. Lattice Structure Applications in Aerospace Field
3. Data-Driven Prediction of Lattice Structure Functionality
3.1. The Development Process of Lattice Structure Research and Performance-Prediction Methods
3.2. Data-Driven Performance Prediction Models
3.2.1. Machine Learning Prediction Models
3.2.2. Deep Learning Prediction Models
3.3. Functional Prediction of Lattice Structures and Applications
3.3.1. Mechanical Performance
3.3.2. Absorption Performance
3.3.3. Acoustic Performance
3.3.4. Thermal Performance
4. Challenges, Limitations, and Prospects
4.1. Costs of Additive Manufacturing and AI
4.2. Quality of AI Dataset
4.3. Performance of AI Models
4.4. Modeling of Heterogeneous Lattice Structure
4.5. Reverse Design Based on Lattice Structure Manufacturing Errors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cramer, N.B.; Kim, J.; Gregg, C.; Cheung, K.C.; Swei, S.S.-M. Modeling of tunable elastic ultralight aircraft. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. AIAA 2019-3159. [Google Scholar]
- Wang, R.; Shang, J.; Li, X.; Luo, Z.; Wu, W. Vibration and damping characteristics of 3D printed mKagome lattice with viscoelastic material filling. Sci. Rep. 2018, 8, 9604. [Google Scholar]
- Zhang, Y.; Yan, Z.; Shen, M.; Jiang, Q.; Wang, W.; Sang, Y.; Hao, B. Study on the thermal control performance of lightweight minimal surface lattice structures for aerospace applications. Appl. Therm. Eng. 2025, 261, 125110. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Guo, C.; Dai, N. Toughness-improving design of lattice sandwich structures. Mater. Des. 2023, 226, 111600. [Google Scholar] [CrossRef]
- Jia, M.; Dai, N.; Wang, T.; Cao, Q.; Yan, L.; Dai, H. A compact quasi-zero stiffness metamaterial for energy absorption and impact protection. Thin-Walled Struct. 2024, 205, 112360. [Google Scholar] [CrossRef]
- Oliveri, G.; Overvelde, J.T. Inverse design of mechanical metamaterials that undergo buckling. Adv. Funct. Mater. 2020, 30, 1909033. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Challapalli, A.; Patel, D.; Li, G. Inverse machine learning framework for optimizing lightweight metamaterials. Mater. Des. 2021, 208, 109937. [Google Scholar] [CrossRef]
- Mohanavel, V.; Ali, K.A.; Prasath, S.; Sathish, T.; Ravichandran, M. Microstructural and tribological characteristics of AA6351/Si3N4 composites manufactured by stir casting. J. Mater. Res. Technol. 2020, 9, 14662–14672. [Google Scholar] [CrossRef]
- Zargham, S.; Ward, T.A.; Ramli, R.; Badruddin, I.A. Topology optimization: A review for structural designs under vibration problems. Struct. Multidiscipl. Optim. 2016, 53, 1157–1177. [Google Scholar] [CrossRef]
- Pattnaik, P.; Sharma, A.; Choudhary, M.; Singh, V.; Agarwal, P.; Kukshal, V. Role of machine learning in the field of Fiber reinforced polymer composites: A preliminary discussion. Mater. Today Proc. 2021, 44, 4703–4708. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Adachi, Y. Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach. Mater. Sci. Eng. A 2019, 744, 661–670. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.; Wu, D. Deep learning for smart manufacturing: Methods and applications. Int. J. Ind. Manuf. Syst. Eng. 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Hu, E.; Seetoh, I.P.; Lai, C.Q. Machine learning assisted investigation of defect influence on the mechanical properties of additively manufactured architected materials. Int. J. Mech. Sci. 2022, 221, 107190. [Google Scholar] [CrossRef]
- Bird, G.D.; Gorrell, S.E.; Salmon, J.L. Dimensionality-reduction-based surrogate models for real-time design space exploration of a jet engine compressor blade. Aerosp. Sci. Technol. 2021, 118, 107077. [Google Scholar] [CrossRef]
- Zhu, Z.; Ning, W.; Niu, X.; Wang, Q.; Shi, R.; Zhao, Y. Designing high elastic modulus magnesium-based composite materials via machine learning approach. Mater. Today Commun. 2023, 37, 107249. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.P.; Tor, S.B.; Lim, C.S. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit. Manuf. 2020, 36, 101538. [Google Scholar] [CrossRef]
- Khan, N.; Asad, H.; Khan, S.; Riccio, A. Towards defect-free lattice structures in additive manufacturing: A holistic review of machine learning advancements. J. Manuf. Process. 2025, 144, 1–53. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Robak, G.; Moj, K.; Krolczyk, G.M.; Kuntoğlu, M. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges. J. Manuf. Process. 2022, 81, 1040–1063. [Google Scholar] [CrossRef]
- McGregor, M.; Patel, S.; McLachlin, S.; Vlasea, M. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Addit. Manuf. 2021, 47, 102273. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Ruan, D.; Zhang, A.; Liang, Y.; Tan, P.J.; Chen, P. Deformation and failure of additively manufactured Voronoi foams under dynamic compressive loadings. Eng. Struct. 2023, 284, 115954. [Google Scholar] [CrossRef]
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.-Y. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017, 126, 58–66. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, S.J.; Wang, H.L.; Hou, W.T.; Hao, Y.L.; Yang, R.; Sercombe, T.B.; Zhang, L.C. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016, 113, 56–67. [Google Scholar] [CrossRef]
- Rueger, Z.; Ha, C.S.; Lakes, R.S. Flexible Cube Tilt Lattice with Anisotropic Cosserat Effects and Negative Poisson’s Ratio. Phys. Status Solidi (B) Basic Res. 2019, 256, 1800512. [Google Scholar] [CrossRef]
- Großmann, A.; Gosmann, J.; Mittelstedt, C. Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties. Mater. Sci. Eng. A 2019, 766, 138356. [Google Scholar] [CrossRef]
- Boccarusso, L.; Durante, M.; Langella, A. Lightweight hemp/bio-epoxy grid structure manufactured by a new continuous process. Compos. Part B Eng. 2018, 146, 165–175. [Google Scholar] [CrossRef]
- Liang, S.-X.; Wang, X.; Zhang, W.; Liu, Y.-J.; Wang, W.; Zhang, L.-C. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today 2020, 19, 100543. [Google Scholar] [CrossRef]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef]
- Ni, X.; Li, M.; Weiner, M.; Alù, A.; Khanikaev, A.B. Demonstration of a quantized acoustic octupole topological insulator. Nat. Commun. 2020, 11, 2108. [Google Scholar] [CrossRef]
- Iandiorio, C.; Mattei, G.; Marotta, E.; Costanza, G.; Tata, M.E.; Salvini, P. The Beneficial Effect of a TPMS-Based Fillet Shape on the Mechanical Strength of Metal Cubic Lattice Structures. Materials 2024, 17, 1553. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Y.; Liang, S.-X.; Liu, Y.; Zhang, L.-C. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R 2021, 146, 100648. [Google Scholar] [CrossRef]
- Syam, W.P.; Jianwei, W.; Zhao, B.; Maskery, I.; Elmadih, W.; Leach, R. Design and analysis of strut-based lattice structures for vibration isolation. Precis. Eng. 2018, 52, 494–506. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 2001, 49, 1747–1769. [Google Scholar] [CrossRef]
- Leary, M.; Mazur, M.; Williams, H.; Yang, E.; Alghamdi, A.; Lozanovski, B.; Zhang, X.; Shidid, D.; Sternahl, L.; Witt, G.; et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Mater. Des. 2018, 157, 179–199. [Google Scholar] [CrossRef]
- Maskery, I.; Sturm, L.; Aremu, A.O.; Panesar, A.; Williams, C.B.; Tuck, C.J.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 2018, 152, 62–71. [Google Scholar] [CrossRef]
- Berger, J.B.; Wadley, H.N.G.; McMeeking, R.M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017, 543, 533–537. [Google Scholar] [CrossRef]
- Tancogne-Dejean, T.; Diamantopoulou, M.; Gorji, M.; Bonatti, C.; Mohr, D. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Adv. Mater. 2018, 30, 1803334. [Google Scholar] [CrossRef]
- Friedrich, M.; Kružík, M. Derivation of von Kármán Plate Theory in the Framework of Three-Dimensional Viscoelasticity. Arch. Ration. Mech. Anal. 2020, 238, 489–540. [Google Scholar] [CrossRef]
- Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019, 183, 108137. [Google Scholar] [CrossRef]
- Dallago, M.; Raghavendra, S.; Luchin, V.; Zappini, G.; Pasini, D.; Benedetti, M. The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion. Int. J. Fatigue 2021, 142, 105946. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, F.; Fu, G.; Zhang, D.; Zhang, T.; Zhou, H. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials 2018, 11, 2411. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Winter, R.E.; McShane, G.J. Impact response of additively manufactured metallic hybrid lattice materials. Int. J. Impact Eng. 2017, 104, 177–191. [Google Scholar] [CrossRef]
- Wen, Z.; Sha, Y.; Yu, T.X. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int. J. Impact Eng. 2019, 125, 163–172. [Google Scholar]
- Plessis, A.D.; Broeckhoven, C.; Yadroitsev, I.; Yadroitsava, I.; Roux, S.G. Analyzing nature’s protective design: The glyptodont body armor. J. Mech. Behav. Biomed. Mater. 2018, 82, 218–223. [Google Scholar] [CrossRef]
- Weiner, M.; Ni, X.; Li, M.; Alù, A.; Khanikaev, A.B. Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial. Sci. Adv. 2020, 6, 4166. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, F.; Wang, J. Acoustic properties of 316l stainless steel lattice structures fabricated via selective laser melting. Metals 2020, 10, 111. [Google Scholar] [CrossRef]
- Ji, J.C.; Luo, Q.; Ye, K. Vibration control based metamaterials and origami structures: A state-of-the-art review. Mech. Syst. Signal Process. 2021, 161, 107945. [Google Scholar] [CrossRef]
- Spadoni, A.; Ruzzene, M. Structural and acoustic behavior of chiral truss-core beams. World Acad. Sci. Eng. Technol. 2006, 128, 616–626. [Google Scholar] [CrossRef]
- Bai, X.; Zheng, Z.; Nakayama, A. Heat transfer performance analysis on lattice core sandwich panel structures. Int. J. Heat Mass Transf. 2019, 143, 118525. [Google Scholar] [CrossRef]
- Do, G.; Geißelbrecht, M.; Schwieger, W.; Freund, H. Additive manufacturing of interpenetrating periodic open cellular structures (interPOCS) with in operando adjustable flow characteristics. Chem. Eng. Process. Process Intensif. 2020, 148, 107786. [Google Scholar] [CrossRef]
- Sélo, R.R.J.; Catchpole-Smith, S.; Maskery, I.; Ashcroft, I.; Tuck, C. On the thermal conductivity of AlSi10Mg and lattice structures made by laser powder bed fusion. Addit. Manuf. 2020, 34, 101214. [Google Scholar] [CrossRef]
- Ho, J.Y.; Leong, K.C.; Wong, T.N. Additively-manufactured metallic porous lattice heat exchangers for air-side heat transfer enhancement. Int. J. Heat Mass Transf. 2020, 150, 119262. [Google Scholar] [CrossRef]
- Garner, E.; Kolken, H.M.A.; Wang, C.C.L.; Zadpoor, A.A.; Wu, J. Compatibility in microstructural optimization for additive manufacturing. Addit. Manuf. 2019, 26, 65–75. [Google Scholar] [CrossRef]
- Feng, J.; Liu, B.; Lin, Z.; Fu, J. Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application. Mater. Des. 2021, 203, 109595. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, W.; Zhu, L.; Meng, F.; Liu, J.; Wen, G. Review on lattice structures for energy absorption properties. Compos. Struct. 2023, 304, 116397. [Google Scholar] [CrossRef]
- NTop. Next-Gen Engineering Design Software: nTop. Available online: https://www.ntop.com/resources/blog/introducing-ntop-4/ (accessed on 14 April 2023).
- Li, D.; Liao, W.; Dai, N.; Dong, G.; Tang, Y.; Xie, Y.M. Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Comput.-Aided Des. 2018, 104, 87–99. [Google Scholar] [CrossRef]
- Cheng, L.; Bai, J.; To, A.C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput. Methods Appl. Mech. Eng. 2019, 344, 334–359. [Google Scholar] [CrossRef]
- Turner, D.; Howie, R.; Bland, P. The Development of a Next-Generation Latticed Resistojet Thruster for CubeSats. Aerospace 2024, 11, 714. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Li, S.; Zhu, J.; Zhou, L. Material-structure integrated design for high-performance aerospace thin-walled component. Acta Aeronaut. Astronaut. Sin. 2023, 44, 627428. [Google Scholar]
- Ashby, M.F.; Gibson, L.J. Cellular Solids: Structure and Properties; Press Syndicate of the University of Cambridge: Cambridge, UK, 1997. [Google Scholar]
- Iandiorio, C.; Milani, D.; Salvini, P. Optimal Uniform Strength Design of Frame and Lattice Structures. Comput. Struct. 2024, 301, 107430. [Google Scholar] [CrossRef]
- Sai, G.; Ning, D.; Xiaosheng, C.; Ren, L.; Zhang, W. Prediction of mechanical properties of lattice based on multi-resolution beam element model. Mach. Des. Manuf. Eng. 2020, 51, 52–58. [Google Scholar]
- Bensousson, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; AMS CHELSEA PUBLISHING: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Rao, C.; Liu, Y. Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Comput. Mater. Sci. 2020, 184, 109850. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Weeger, O. Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials. Int. J. Solids Struct. 2021, 224, 111037. [Google Scholar] [CrossRef]
- Li, H.; Ge, L.; Liu, B.; Su, H.; Feng, T.; Fang, D. An equivalent model for sandwich panel with double-directional trapezoidal corrugated core. J. Sandw. Struct. Mater. 2020, 22, 2445–2465. [Google Scholar] [CrossRef]
- Huang, L.; Yuan, H.; Zhao, H. An FEM-based homogenization method for orthogonal lattice metamaterials within micropolar elasticity. Int. J. Mech. Sci. 2023, 238, 107836. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Dai, N.; Xie, Y.M. Anisotropic design and optimization of conformal gradient lattice structures. Comput.-Aided Des. 2020, 119, 102787. [Google Scholar] [CrossRef]
- Muhammad; Kennedy, J.; Lim, C.W. Machine learning and deep learning in phononic crystals and metamaterials—A review. Mater. Today Commun. 2022, 33, 104606. [Google Scholar] [CrossRef]
- Sanchez-Palencia, E. Non-Homogeneous Media and Vibration Theory; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Timoshenko, S. History of Strength of Materials; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Florence, C.; Sab, K. A rigorous homogenization method for the determination of the overall ultimate strength of periodic discrete media and an application to general hexagonal lattices of beams. Eur. J. Mech. A/Solids 2006, 25, 72–97. [Google Scholar] [CrossRef]
- Timoshenko, S.P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1921, 41, 744–746. [Google Scholar] [CrossRef]
- Berry, D.T.; Yang, T.Y.; Skelton, R.E. Dynamics and control of lattice beams using simplified finite element models. J. Guid. 1985, 8, 5. [Google Scholar] [CrossRef]
- Luxner, M.H.; Stampfl, J.; Pettermann, H.E. Finite element modeling concepts and linear analyses of 3D regular open cell structures. Mech. Behav. Cell. Solids 2005, 40, 5859–5866. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Miller, G. The cognitive revolution: A historical perspective. Trends Cogn. Sci. 2003, 7, 141–144. [Google Scholar] [CrossRef]
- Crevier, D. AI: The Tumultuous Search for Artificial Intelligence; BasicBooks: New York, NY, USA, 1993. [Google Scholar]
- Christian, B. The Alignment Problem: Machine Learning and Human Values; W. W. Norton & Company: New York, NY, USA, 2020. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Okafor, C.E.; Iweriolor, S.; Ani, O.I.; Ahmad, S.; Mehfuz, S.; Ekwueme, G.O.; Chukwumuanya, O.E.; Abonyi, S.E.; Ekengwu, I.E.; Chikelu, O.P. Advances in machine learning-aided design of reinforced polymer composite and hybrid material systems. Hybrid Adv. 2023, 2, 100026. [Google Scholar] [CrossRef]
- Pan, H.; Peng, J.; Geng, X.; Gao, M.; Miao, X. Prediction of mechanical properties for typical pressure vessel steels by small punch test combined with machine learning. Int. J. Press. Vessel. Pip. 2023, 206, 105060. [Google Scholar] [CrossRef]
- Champa-Bujaico, E.; Díez-Pascual, A.M.; Redondo, A.L.; Garcia-Diaz, P. Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques. Compos. Part B 2024, 269, 111099. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Jiang, B.; Wang, R.; Liu, Y.; Jia, L. Mechanical properties prediction of composite laminate with FEA and machine learning coupled method. Compos. Struct. 2022, 299, 116086. [Google Scholar] [CrossRef]
- Fan, H.; Hu, L. Pressure vessel nozzle local stress prediction software based on ABAQUS machine learning. SoftwareX 2023, 24, 101550. [Google Scholar] [CrossRef]
- Hou, H.; Wang, J.; Ye, L.; Zhu, S.; Wang, L.; Guan, S. Prediction of mechanical properties of biomedical magnesium alloys based on ensemble machine learning. Mater. Lett. 2023, 348, 134605. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Li, S.; Zhu, W.; Ke, Y. Machine learning and materials informatics approaches for predicting transverse mechanical properties of unidirectional CFRP composites with microvoids. Mater. Des. 2022, 224, 111340. [Google Scholar] [CrossRef]
- Saboori, T.; Zhao, L.; Mesgarpour, M.; Wongwises, S.; Mahian, O. A novel macro-scale machine learning prediction based on high-fidelity CFD simulations: A case study on the pore-scale porous Trombe wall with phase change material capsulation. J. Build. Eng. 2022, 54, 104505. [Google Scholar] [CrossRef]
- Cui, H.; Wang, C.; Liu, X.; Liu, X.; Yuan, J.; Liu, Y. Prediction of the distribution of airflow within the cotton canopy using fluidestructure interaction simulation and machine-learning methods. Biosyst. Eng. 2023, 232, 51–66. [Google Scholar] [CrossRef]
- Zhu, P.; Wu, Z.; Wang, H.; Yan, H.; Li, B.; Yang, F.; Zhang, Z. Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network. Appl. Energy 2022, 322, 119508. [Google Scholar] [CrossRef]
- Qu, P.; Zhang, L.; Zhu, Q.; Wu, M. Probabilistic reliability assessment of twin tunnels considering fluid–solid coupling with physics-guided machine learning. Reliab. Eng. Syst. Saf. 2023, 231, 109028. [Google Scholar] [CrossRef]
- Aggogeri, F.; Merlo, A.; Pellegrini, N. Modeling the thermo-mechanical deformations of machine tool structures in CFRP material adopting data-driven prediction schemes. Mechatronics 2020, 71, 102436. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.-X.; Haidn, O.J.; Thuerey, N.; Hu, X.-Y. Supervised learning mixing characteristics of film cooling in a rocket combustor using convolutional neural networks. Acta Astronaut. 2020, 175, 11–18. [Google Scholar] [CrossRef]
- Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 481–490. [Google Scholar]
- Wang, L.; Xu, J.; Wang, Z.; Zhang, B.; Luo, Z.; Yuan, J.; Tan, A.C.C. A novel cost-efficient deep learning framework for static fluid–structure interaction analysis of hydrofoil in tidal turbine morphing blade. Renew. Energy 2023, 208, 367–384. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zhang, J. Prediction of thermo-mechanical performance for effusion cooling by machine learning method. Int. J. Heat Mass Transf. 2023, 207, 123969. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; Lou, J.; Hu, Y.; You, Y. Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall. Aerosp. Sci. Technol. 2023, 133, 108089. [Google Scholar] [CrossRef]
- Ding, X.; Gu, Z.; Hou, X.; Xia, M.; Ismail, Y.; Ye, J. Effects of defects on the transverse mechanical response of unidirectional fibre-reinforced polymers: DEM simulation and deep learning prediction. Compos. Struct. 2023, 321, 117301. [Google Scholar] [CrossRef]
- Wu, P.; Yuan, W.; Ji, L.; Zhou, L.; Zhou, Z.; Feng, W.; Guo, Y. Missile aerodynamic shape optimization design using deep neural networks. Aerosp. Sci. Technol. 2022, 126, 107640. [Google Scholar] [CrossRef]
- Zhang, C.; Ridard, A.; Kibsey, M.; Zhao, Y.F. Variant design generation and machine learning aided deformation prediction for auxetic metamaterials. Mech. Mater. 2023, 181, 104642. [Google Scholar] [CrossRef]
- Shishir, M.I.R.; Tabarraei, A. Multi–materials topology optimization using deep neural network for coupled thermo–mechanical problems. Comput. Struct. 2024, 291, 107218. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, D.; Zhang, Y.; Li, N.; Gao, S.; Yue, Y. Real-time hybrid simulation incorporating machine learning for deep-water bridges subjected to seismic ground motion with fluid-structure dynamic interaction. Soil Dyn. Earthq. Eng. 2023, 175, 108263. [Google Scholar] [CrossRef]
- Shao, M.; Chen, J.; Wang, T. Accelerating Analysis for Structure Design via Deep Learning Surrogate Models. Adv. Intell. Syst. 2023, 5, 2200099. [Google Scholar] [CrossRef]
- Bartošák, M. Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading. Int. J. Fatigue 2022, 163, 107067. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Li, L.; Hao, H.; Chen, W.; Shao, Y. Machine learning prediction of structural dynamic responses using graph neural networks. Comput. Struct. 2023, 289, 107188. [Google Scholar] [CrossRef]
- Li, N.; Liu, Y.; Gong, G.; Zhao, L.; Yuan, H. A generative deep learning approach for real-time prediction of hypersonic vehicles in fluid-thermo-structural coupling fields. Aerosp. Sci. Technol. 2023, 139, 108398. [Google Scholar] [CrossRef]
- Mudhsh, M.; El-Said, E.M.S.; Aseeri, A.O.; Almodfer, R.; Elaziz, M.A.; Elshamy, S.M.; Elsheikh, A.H. Modelling of thermo-hydraulic behavior of a helical heat exchanger using machine learning model and fire hawk optimizer. Case Stud. Therm. Eng. 2023, 49, 103294. [Google Scholar] [CrossRef]
- Kou, C.; Jia, S.; Yuan, X.; Luo, Y. Deep multi-field network for physical and concentration field prediction of TDM reactor under different carbon particle distributions. Chem. Eng. Sci. 2023, 280, 118944. [Google Scholar] [CrossRef]
- Warey, A.; Kaushik, S.; Khalighi, B.; Cruse, M.; Venkatesan, G. Data-driven prediction of vehicle cabin thermal comfort: Using machine learning and high-fidelity simulation results. Int. J. Heat Mass Transf. 2020, 148, 119083. [Google Scholar] [CrossRef]
- Abu-Mualla, M.; Huang, J. Inverse design of 3D cellular materials with physics-guided machine learning. Mater. Des. 2023, 232, 112103. [Google Scholar] [CrossRef]
- Jia, Z.; Gong, H.; Liu, S.; Zhang, J.; Zhang, Q. Designing three-dimensional lattice structures with anticipated properties through a deep learning method. Mater. Des. 2024, 244, 113139. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Tian, J.; Ning, K.; Li, K.; Xia, S.; Zhou, L.; Lu, Y. Performance-based inverse structural design of complex gradient triply periodic minimal surface structures based on a deep learning approach. Mater. Today Commun. 2024, 40, 109424. [Google Scholar] [CrossRef]
- Peng, H.; Liu, A.; Huang, J.; Cao, L.; Liu, J.; Lu, L. PH-Net: Parallelepiped microstructure homogenization via 3D Convolutional Neural Networks. Addit. Manuf. 2022, 60, 103237. [Google Scholar]
- Zhang, C.; Wang, B.; Zhu, H.; Fan, H. Structure genome based machine learning method for woven lattice structures. Int. J. Mech. Sci. 2023, 245, 108134. [Google Scholar] [CrossRef]
- Meyer, P.P.; Bonatti, C.; Tancogne-Dejean, T.; Mohr, D. Graph-based metamaterials: Deep learning of structure-property relations. Mater. Des. 2022, 223, 111175. [Google Scholar] [CrossRef]
- Jain, A.; Haghighat, E.; Nelaturi, S. LatticeGraphNet: A two-scale graph neural operator for simulating lattice structures. Eng. Comput. 2024. [Google Scholar] [CrossRef]
- Ha, C.S.; Yao, D.; Xu, Z.; Liu, C.; Liu, H.; Elkins, D.; Kile, M.; Deshpande, V.; Kong, Z.; Bauchy, M.; et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat. Commun. 2023, 14, 5765. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Luo, J.; Zhong, J.; Xu, Y.; Wan, B.; Huang, W.; Fang, J.; Steven, G.P.; Sun, G.; Li, Q. Topology optimization for design and additive manufacturing of functionally graded lattice structures using derivative-aware machine learning algorithms. Addit. Manuf. 2023, 78, 103833. [Google Scholar]
- Brown, N.K.; Deshpande, A.; Garland, A.; Pradeep, S.A.; Fadel, G.; Pilla, S.; Li, G. Deep reinforcement learning for the design of mechanical metamaterials with tunable deformation and hysteretic characteristics. Mater. Des. 2023, 235, 112428. [Google Scholar] [CrossRef]
- Wang, L.; Chan, Y.-C.; Ahmed, F.; Liu, Z.; Zhu, P.; Chen, W. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Method Appl. Mech. Eng. 2020, 372, 113377. [Google Scholar] [CrossRef]
- Wang, J.; Panesar, A. Machine learning based lattice generation method derived from topology optimization. Addit. Manuf. 2022, 60, 103238. [Google Scholar]
- Zheng, X.; Chen, T.-T.; Guo, X.; Samitsu, S.; Watannabe, I. Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 2021, 211, 110178. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Wu, M.; Hou, J.; Zhou, H.; Meng, L.; Li, C. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components. Chin. J. Aeronaut. 2021, 34, 386–398. [Google Scholar] [CrossRef]
- Wu, Y.; Mao, Z.; Feng, Y. Energy absorption prediction for lattice structure based on D2 shape distribution and machine learning. Compos. Struct. 2023, 319, 117136. [Google Scholar] [CrossRef]
- Isanaka, B.R.; Mukhopadhyay, T.; Varma, R.K.; Kushvaha, V. On exploiting machine learning for failure pattern driven strength enhancement of honeycomb lattices. Acta Mater. 2022, 239, 118226. [Google Scholar] [CrossRef]
- Tae-Wook, K. KARI Optimizes and Converts 3D Lattice Design with DfAM Process and Materialise 3-Matic. Available online: https://www.materialise.com/en/inspiration/cases/kari-3d-modeling-lattice-design-metal-3d-printing (accessed on 14 April 2023).
- Cobra Aero Reduced Air-Cooled Cylinder Weight by 50% with nTop. Available online: https://www.ntop.com/resources/case-studies/cobra-aero-multiphysics-simulation-drone-engine/ (accessed on 14 April 2023).
- Yu, J.; Shi, X.; Feng, Y.; Chang, J.; Liu, J.; Xi, H.; Huang, S.; Zhang, W. Machine learning-based design and optimization of double curved beams for multi-stable honeycomb structures. Extrem. Mech. Lett. 2023, 65, 102109. [Google Scholar] [CrossRef]
- Eren, O.; Yüksel, N.; Borklü, H.R.; Sezer, H.K.; Canyurt, O.E. Deep learning-enabled design for tailored mechanical properties of SLM-manufactured metallic lattice structures. Eng. Appl. Artif. Intell. 2024, 130, 107685. [Google Scholar] [CrossRef]
- Wang, G.; Ma, S.; Wang, C.; Ma, B.; Zeng, F. Design and Optimization of Lattice Infilled Landing Impact Absorbing Structure for a Reentry Capsule. IET Conf. Proc. 2022, 2022, 1427–1431. [Google Scholar] [CrossRef]
- TeamIndus Moonshot. Structural Evolution of the TeamIndus Spacecraft That Will Land on the Moon. Available online: https://medium.com/teamindus/structural-evolution-of-the-teamindus-spacecraft-that-will-land-on-the-moon-b5aa6bc73ccc (accessed on 15 December 2017).
- Eureka. 3D-Printed Lattice Structure Absorbs Vibrations and Provides Support. Available online: https://www.eurekamagazine.co.uk/content/news/3d-printed-lattice-structure-absorbs-vibrations-and-provides-support/ (accessed on 1 August 2016).
- Yin, S.; Chen, H.; Wu, Y.; Li, Y.; Xu, J. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Compos. Struct. 2018, 201, 131–140. [Google Scholar] [CrossRef]
- Parva, M. Thermal Protection System. Available online: http://svarka-24.info/3d-pechat-teper-i-v-svarke/ (accessed on 5 July 2020).
- Chatterjee, T.; Bera, K.K.; Banerjee, A. Machine learning enabled quantification of stochastic active metadamping in acoustic metamaterials. J. Sound Vib. 2023, 567, 117938. [Google Scholar] [CrossRef]
- Jain, P.; Chhabra, H.; Chauhan, U.; Singh, D.K.; Anwer, T.M.K.; Ahammad, S.H.; Hossain, M.A.; Rashed, A.N.Z. Multiband Metamaterial absorber with absorption prediction by assisted machine learning. Mater. Chem. Phys. 2023, 307, 128180. [Google Scholar] [CrossRef]
- Shendy, M.; Alkhader, M.; Abu-Nabah, B.A.; Jaradat, M.A.; Venkatesh, T.A. Machine learning assisted approach to design lattice materials with prescribed band gap characteristics. Eur. J. Mech./A Solids 2023, 102, 105125. [Google Scholar] [CrossRef]
- Liu, C.; Yu, G. Predicting the Dispersion Relations of One-Dimensional Phononic Crystals by Neural Networks. Sci. Rep. 2019, 9, 15322. [Google Scholar] [CrossRef]
- Li, X.; Ning, S.; Liu, Z.; Yan, Z.; Luo, C.; Zhuang, Z. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput. Methods Appl. Mech. Eng. 2020, 361, 112737. [Google Scholar] [CrossRef]
- Liu, C.; Yu, G.; Liu, Z. Machine learning models in phononic metamaterials. Curr. Opin. Solid State Mater. Sci. 2024, 28, 101133. [Google Scholar] [CrossRef]
- Sheng, H.; He, M.-X.; Zhao, J.; Kam, C.T.; Ding, Q.; Lee, H.P. The ABH-based lattice structure for load bearing and vibration suppression. Int. J. Mech. Sci. 2023, 252, 108378. [Google Scholar] [CrossRef]
- Pham, D.-B.; Huang, S.-C. A novel bio-inspired lattice metamaterial for energy absorption and vibration mitigation. J. Mech. Sci. Technol. 2024, 38, 2725–2739. [Google Scholar] [CrossRef]
- An, X.; Lai, C.; He, W.; Fan, H. Three-dimensional meta-truss lattice composite structures with vibration isolation performance. Extrem. Mech. Lett. 2019, 33, 100577. [Google Scholar] [CrossRef]
- An, X.; Yuan, X.; Sun, G.; Hou, X.; Fan, H. Design of lattice cylindrical shell meta-structures for broadband vibration reduction and high load-bearing capacity. Thin-Walled Struct. 2024, 197, 111647. [Google Scholar] [CrossRef]
- Suzuki, A.; Nakatani, H.; Kobashi, M. Machine learning surrogate modeling toward the design of lattice-structured heat sinks fabricated by additive manufacturing. Mater. Des. 2023, 230, 111969. [Google Scholar] [CrossRef]
- Shen, S. Numerical simulation and ANN prediction of phase change material embedded within 3D printing lattice structures. Case Stud. Therm. Eng. 2024, 53, 103818. [Google Scholar] [CrossRef]
- Aksoy, B.; Salman, O.K.M.; Özsoy, K. The estimation of the thermal performance of heat sinks manufactured by direct metal laser sintering based on machine learning. Measurement 2023, 225, 113625. [Google Scholar] [CrossRef]
- Huang, Q.; Hong, D.; Niu, B.; Long, D.; Zhang, Y. An interpretable deep learning strategy for effective thermal conductivity prediction of porous materials. Int. J. Heat Mass Transf. 2024, 221, 125064. [Google Scholar] [CrossRef]
- Wang, N.; Kaur, I.; Singh, P.; Li, L. Prediction of effective thermal conductivity of porous lattice structures and validation with additively manufactured metal foams. Appl. Therm. Eng. 2021, 187, 116558. [Google Scholar] [CrossRef]
- Jiayu, L.; Wenyang, Z.; Wei, L.; BingQing, C. Laser Additive Manufacturing and Heat Transfer Performance Measurement of Lattice Structure Heat Exchanger. Chin. J. Lasers 2023, 50, 4. [Google Scholar]
- Ferrari, L.; Barbato, M.; Esser, B.; Petkov, I.; Kuhn, M.; Gianella, S.; Barcena, J.; Jimenez, C.; Francesconi, D.; Liedtke, V.; et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: An active cooled thermal protection for space vehicles. Compos. Struct. 2016, 154, 61–68. [Google Scholar] [CrossRef]
- Son, K.N.; Weibel, J.A.; Kumaresan, V.; Garimella, S.V. Design of multifunctional lattice-frame materials for compact heat exchangers. Int. J. Heat Mass Transf. 2017, 115, 619–629. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Shaik, A.M.; Sastry, C.C.; Krishnaiah, J.; Patil, S.; Nikhare, C.P. Performance evaluation of machine learning techniques in surface roughness prediction for 3D printed micro-lattice structures. J. Manuf. Process. 2025, 137, 320–341. [Google Scholar] [CrossRef]
Model | Target | Result | Author |
---|---|---|---|
Random Forest (RF) | SPT stress-strain curves | Models correlating load displacement and true stress-strain curves | [86] |
Random Forest (RF) | Properties of hybrid nanocomposites | High accuracy, low errors | [87] |
Random Forest (RF) | Mechanical properties of composite plates | Accurate prediction | [88] |
Gradient-Boosting Regression Trees (GBRT) | Stress at nozzle junctions | Accuracy > 0.999 | [89] |
Ridge Regression (RR) Support Vector Machine (SVM) Gradient-Boosting Regression Trees (GBRT) | UTS and YS of Mg alloys | Predictions close to experiments | [90] |
Back Propagation Neural Network (BP) | Transverse properties of CFRP composites | Good agreement with test data | [91] |
Artificial Neural Network (ANN) | Microscale flow and thermal patterns | Accurate prediction | [92] |
Artificial Neural Network (ANN) | Airflow field | Reduced computational cost | [93] |
Artificial Neural Network (ANN) | SOFC performance | Error: 0.767% (decay), 0.248% (current) | [94] |
CatBoost | Tunnel forces and deformation | Replaced FEA with high accuracy | [95] |
Multilayer Perceptron (MLP) | CFRP thermal deformation | Residuals < 7.0 µm | [96] |
Convolutional Neural Networks (CNN) | Film cooling field | Global error < 5.5 × 10−3 | [97] |
Convolutional Neural Networks (CNN) | 2D/3D laminar flows | Is 10,000× faster than CFD | [98] |
Convolutional Neural Networks (CNN) | FSI stress | Accuracy > 92%, 100× faster | [99] |
Deep Neural Networks (DNN) | Thermomechanical properties of liquid cooling on flat surfaces | Error: 0.5% (temp), 0.08% (stress) | [100] |
Deep Neural Networks (DNN) | Airfoil coefficients | Pred < 1 s; 82.5% drag, 88.6% moment reduction | [101] |
Deep Neural Networks (DNN) | Crack location in FRP | Predicted initial crack sites | [102] |
Conditional Wasserstein Gan-GP (CWGAN-GP) Convolutional Neural Networks (CNN) Multi-Gate Mixture-of-Experts-3D (MMoE-3D) | Missile shape optimization | Efficient expert-based design | [103] |
U-net | Nonlinear deformation | Error 8–20%; time <0.5 s | [104] |
Fully Connected Neural Network (FCNN) | Topology optimization | Validated in case studies | [105] |
Long Short-Term Memory Neural Network (LSTM) | FSI under seismic loads | Enabled real-time hybrid sim | [106] |
Fully Connected Neural Network (FCNN) Long Short-Term Memory Neural Network (LSTM) | Bullet impact stress | Accuracy: 92.19% (FCNN), 92.41% (LSTM) | [107] |
Long Short-Term Memory Neural Network (LSTM) Shallow Neural Networks | Lifespan under loading | Strong experimental correlation | [108] |
Graph Neural Networks (GNN) | Displacement, strain, stress | High-accuracy predictions | [109] |
Deep Convolutional Conditional Generative Adversarial Network (DCCGAN) 3D Field Solution Generative Adversarial Network (fsGAN) | 3D thermal–structural field | Real-time, high-res prediction | [110] |
Random Vector Functional Link Network (RVFL) | HPHE outlet temperature | Accurate prediction | [111] |
Deep Multi-Field Network (DMN) | Multi-field behavior | Accurate prediction of multiple fields under various particle distributions | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Dai, N.; Cao, Q. The Data-Driven Performance Prediction of Lattice Structures: The State-of-the-Art in Properties, Future Trends, and Challenges. Aerospace 2025, 12, 390. https://doi.org/10.3390/aerospace12050390
Yang S, Dai N, Cao Q. The Data-Driven Performance Prediction of Lattice Structures: The State-of-the-Art in Properties, Future Trends, and Challenges. Aerospace. 2025; 12(5):390. https://doi.org/10.3390/aerospace12050390
Chicago/Turabian StyleYang, Siyuan, Ning Dai, and Qianfeng Cao. 2025. "The Data-Driven Performance Prediction of Lattice Structures: The State-of-the-Art in Properties, Future Trends, and Challenges" Aerospace 12, no. 5: 390. https://doi.org/10.3390/aerospace12050390
APA StyleYang, S., Dai, N., & Cao, Q. (2025). The Data-Driven Performance Prediction of Lattice Structures: The State-of-the-Art in Properties, Future Trends, and Challenges. Aerospace, 12(5), 390. https://doi.org/10.3390/aerospace12050390