A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law
Abstract
1. Introduction
2. Preliminaries and Problem Setup
2.1. Relative Kinematics and Problem Formulation
2.2. Conventional LESO
3. Guidance Law Design with Terminal Angle Constraint
3.1. Generalized Super-Twisting Extended State Observer Design
3.2. Finite-Time Terminal Sliding Mode Guidance Law Design
- (1)
- is a class function, where .
- (2)
- The function is non-negative and nonincreasing, with its initial value significantly greater than , which is denoted as . Furthermore, it satisfies the condition at a predetermined time , which represents the specified time constant.
- (3)
- If , , is bounded, and .
- (4)
- If , , and .
- (1)
- When , we can obtain the following:
- (2)
- When , we can obtain the following:
3.3. Stability Analysis
- (1)
- Choose the following Lyapunov function:Then, differentiate the above expression with respect to time:Suppose the existence of a positive variable x that satisfies and ; we can solve this first-order linear differential equation to obtain the following:Furthermore, we obtain the following:From the above expression, we can be obtain that the sliding variable will converge to the following region at the time of interception:
- (2)
- Choose another Lyapunov function:Similarly, differentiating the above equation with respect to time yields the following:According to Lemma 1, it can be concluded that it will converge to the region at the time of interception:
4. Simulation and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Hu, Q.; Shin, H.-S.; Tsourdos, A.; Xin, M. Sensor-based robust incremental three-dimensional guidance law with terminal angle constraint. J. Guid. Control Dyn. 2021, 44, 2016–2030. [Google Scholar] [CrossRef]
- Li, K.B.; Su, W.S.; Chen, L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach. Aerosp. Sci. Technol. 2017, 69, 333–341. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, S.; Li, W.; Xia, Q. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception. J. Syst. Eng. Electron. 2020, 31, 168–184. [Google Scholar] [CrossRef]
- Shima, T.; Golan, O.M. Head pursuit guidance. J. Guid. Control Dyn. 2007, 30, 437–1444. [Google Scholar] [CrossRef]
- Wei, J.H.; Sun, Y.L.; Zhang, J. Integral sliding mode variable structure guidance law with landing angle constrain of the guided projectile. J. Ordnance Equip. Eng. 2019, 40, 103–105. (In Chinese) [Google Scholar]
- Zhou, H.; Wang, X.; Bai, B.; Cui, N. Reentry guidance with constrained impact for hypersonic weapon by novel particle swarm optimization. Aerosp. Sci. Technol. 2018, 78, 205–213. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Ma, G.X.; Wu, H.L. A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 1725–1734. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Wang, Z.; Yang, J. BPNG law with arbitrary initial lead angle and terminal impact angle constraint and time-to-go estimation. Acta Armamentarii 2019, 40, 68. [Google Scholar]
- Behnamgol, V.; Vali, A.R.; Mohammadi, A. A new adaptive finite time nonlinear guidance law to intercept maneuvering targets. Aerosp. Sci. Technol. 2017, 68, 416–421. [Google Scholar] [CrossRef]
- Taub, I.; Shima, T. Intercept angle missile guidance under time varying acceleration bounds. J. Guid. Control Dyn. 2013, 36, 686–699. [Google Scholar] [CrossRef]
- Li, H.; She, H. Trajectory shaping guidance law based on ideal line-of-sight. Acta Armamentarii 2014, 35, 1200. [Google Scholar]
- Zhao, J.; Zhou, J. Strictly convergent nonsingular terminal sliding mode guidance law with impact angle constraints. Optik 2016, 127, 10971–10980. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Q.; Zhi, Y. A TSM control scheme of integrated guidance autopilot design for UAV. In Proceedings of the 3rd IEEE International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Volume 4, pp. 431–435. [Google Scholar]
- Zhang, Y.; Sun, M.; Chen, Z. Finite-time convergent guidance law with impact angle constraint based on sliding-mode control. Nonlinear Dyn. 2012, 70, 619–625. [Google Scholar] [CrossRef]
- Kumar, S.R.; Rao, S.; Ghose, D. Nonsingular terminal sliding mode guidance with impact angle constraints. J. Guid. Control Dyn. 2014, 37, 1114–1130. [Google Scholar] [CrossRef]
- Feng, Y.; Bao, S.; Yu, X. Design method of non-singular terminal sliding mode control systems. Control Decis. 2002, 17, 194–198. (In Chinese) [Google Scholar]
- Xiong, S.; Wang, W.; Liu, X.; Wang, S.; Chen, Z. Guidance law against maneuvering targets with intercept angle constraint. ISA Trans. 2014, 53, 1332–1342. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Li, Y. Nonsingular terminal sliding-mode-based guidance law design with impact angle constraints. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 47–54. [Google Scholar] [CrossRef]
- Kumar, S.R.; Rao, S.; Ghose, D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. J. Guid. Control Dyn. 2012, 35, 1230–1246. [Google Scholar] [CrossRef]
- Song, J.; Song, S.; Zhou, H. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints. Int. J. Control Autom. Syst. 2016, 14, 99–114. [Google Scholar] [CrossRef]
- Yujie, S.I.; Shenmin, S. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets. Chin. J. Aeronaut. 2017, 30, 1985–2003. [Google Scholar]
- Song, Q.Z.; Meng, X.Y. Design and simulation of guidance law with angular constraint based on non-singular terminal sliding mode. Phys. Procedia 2012, 25, 1197–1204. [Google Scholar]
- He, S.M.; Lin, D.F. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint. Int. J. Aeronaut. Space Sci. 2014, 15, 146–152. [Google Scholar] [CrossRef]
- Xiong, S.F.; Wang, W.H.; Song, S.Y. Extended state observer based impact angleconstrained guidance law for maneuvering target interception. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2589–2607. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.-L.; Zuo, Z. Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach. Automatica 2019, 105, 406–414. [Google Scholar] [CrossRef]
- Becerra, H.M.; Vazquez, C.R.; Arechavaleta, G.; Delfin, J. Predefined-time convergence control for high-order integrator systems using time base generators. IEEE Trans. Control Syst. Technol. 2018, 26, 1866–1873. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.-L.; Zuo, Z. Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach. IEEE Trans. Autom. Control 2020, 66, 2739–2745. [Google Scholar] [CrossRef]
- Parra-Vega, V. Second order sliding mode control for robot arms with time base generators for finite-time tracking. Dyn. Control 2001, 11, 175–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Sheng, Y.; Liu, X. Impact angle constrained guidance for all-aspect interception with function-based finite-time sliding mode control. Nonlinear Dyn. 2016, 85, 1791–1804. [Google Scholar] [CrossRef]
- Ji, H.; Liu, X.; Song, Z.; Zhao, Y. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint. J. Frankl. Inst. 2018, 355, 9192–9208. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, G.; Wang, Q.; Ding, D.; Li, B.; Wang, G.; Xu, D. High-gain nonlinear active disturbance rejection control strategy for traction permanent magnet motor drives. IEEE Trans. Power Electron. 2022, 37, 13135–13146. [Google Scholar] [CrossRef]
- Wang, X.; Lu, H.; Huang, X.; Zuo, Z. Three-dimensional terminal angle constraint finite-time dual-layer guidance law with autopilot dynamics. Aerosp. Sci. Technol. 2021, 116, 106818. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Guo, B.Z. A nonlinear extended state observer based on fractional power functions. Automatica 2017, 81, 286–296. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Guo, B.Z. A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 2017, 63, 211–218. [Google Scholar] [CrossRef]
- Sheikhbahaei, R.; Khankalantary, S. Three-dimensional continuous-time integrated guidance and control design using model predictive control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2023, 237, 503–515. [Google Scholar] [CrossRef]
- Zhao, L.; Gu, S.; Zhang, J.; Li, S. Finite-time trajectory tracking control for rodless pneumatic cylinder systems with disturbances. IEEE Trans. Ind. Electron. 2021, 69, 4137–4147. [Google Scholar] [CrossRef]
- Lin, D.; Ji, Y.; Wang, W.; Wang, Y.; Wang, H.; Zhang, F. Three-dimensional impact angle-constrained adaptive guidance law considering autopilot lag and input saturation. Int. J. Robust Nonlinear Control 2020, 30, 3653–3671. [Google Scholar] [CrossRef]
- Han, L.; Mao, J.; Cao, P.; Gan, Y.; Li, S. Toward sensorless interaction force estimation for industrial robots using high-order finite-time observers. IEEE Trans. Ind. Electron. 2021, 69, 7275–7284. [Google Scholar] [CrossRef]
- Johnson, C.R. Hadamard products of matrices. Linear Multilinear Algebra 1974, 1, 295–307. [Google Scholar] [CrossRef]
- Liu, S.; Leiva, V.; Zhuang, D.; Ma, T.; Figueroa-Zúñiga, J.I. Matrix differential calculus with applications in the multivariate linear model and its diagnostics. J. Multivar. Anal. 2022, 188, 104849. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Y.; Gao, C.; An, R. Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer. Def. Technol. 2024, 32, 412–429. [Google Scholar] [CrossRef]
- Qiu, X.; Lai, P.; Gao, C.; Jing, W. Recorded recurrent deep reinforcement learning guidance laws for intercepting endoatmospheric maneuvering missiles. Def. Technol. 2024, 31, 457–470. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, L.; Guan, J.; Yi, W.; Yin, H. Intercept Guidance of Maneuvering Targets with Deep Reinforcement Learning. Int. J. Aerosp. Eng. 2023, 2023, 7924190. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Missile position (m) | (0,0,0) |
Target position (m) | (10,000,9000,5000) |
Missile speed (m/s) | 500 |
Target speed (m/s) | 300 |
Missile flight path angle () | (45,0) |
Target flight path angle () | (−30,120) |
Method | |||||
---|---|---|---|---|---|
Miss distance (m) | TBGFTTSM FNTSMGL | 0.2779 0.8495 | 0.2245 0.9794 | 0.4320 0.8365 | 0.2066 0.6139 |
Error of (°) | TBGFTTSM FNTSMGL | ||||
Interception time (s) | TBGFTTSM FNTSMGL | 28.84 32.69 | 27.97 29.47 | 27.42 26.83 | 27.17 27.66 |
Method | |||||
---|---|---|---|---|---|
Miss distance (m) | TBGFTTSM FNTSMGL | 0.4203 0.9267 | 0.2245 0.9794 | 0.1275 13230 | 0.2876 11707 |
Error of (°) | TBGFTTSM FNTSMGL | 8.98 | 15.05 | ||
Interception time (s) | TBGFTTSM FNTSMGL | 27.49 29.46 | 27.97 29.47 | 28.81 3.05 | 29.76 5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Xiao, L.; Yi, W. A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace 2025, 12, 252. https://doi.org/10.3390/aerospace12030252
Hu Z, Xiao L, Yi W. A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace. 2025; 12(3):252. https://doi.org/10.3390/aerospace12030252
Chicago/Turabian StyleHu, Zhe, Liang Xiao, and Wenjun Yi. 2025. "A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law" Aerospace 12, no. 3: 252. https://doi.org/10.3390/aerospace12030252
APA StyleHu, Z., Xiao, L., & Yi, W. (2025). A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace, 12(3), 252. https://doi.org/10.3390/aerospace12030252