A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law
Abstract
:1. Introduction
2. Preliminaries and Problem Setup
2.1. Relative Kinematics and Problem Formulation
2.2. Conventional LESO
3. Guidance Law Design with Terminal Angle Constraint
3.1. Generalized Super-Twisting Extended State Observer Design
3.2. Finite-Time Terminal Sliding Mode Guidance Law Design
- (1)
- is a class function, where .
- (2)
- The function is non-negative and nonincreasing, with its initial value significantly greater than , which is denoted as . Furthermore, it satisfies the condition at a predetermined time , which represents the specified time constant.
- (3)
- If , , is bounded, and .
- (4)
- If , , and .
- (1)
- When , we can obtain the following:
- (2)
- When , we can obtain the following:
3.3. Stability Analysis
- (1)
- Choose the following Lyapunov function:Then, differentiate the above expression with respect to time:Suppose the existence of a positive variable x that satisfies and ; we can solve this first-order linear differential equation to obtain the following:Furthermore, we obtain the following:From the above expression, we can be obtain that the sliding variable will converge to the following region at the time of interception:
- (2)
- Choose another Lyapunov function:Similarly, differentiating the above equation with respect to time yields the following:According to Lemma 1, it can be concluded that it will converge to the region at the time of interception:
4. Simulation and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Hu, Q.; Shin, H.-S.; Tsourdos, A.; Xin, M. Sensor-based robust incremental three-dimensional guidance law with terminal angle constraint. J. Guid. Control Dyn. 2021, 44, 2016–2030. [Google Scholar] [CrossRef]
- Li, K.B.; Su, W.S.; Chen, L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach. Aerosp. Sci. Technol. 2017, 69, 333–341. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, S.; Li, W.; Xia, Q. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception. J. Syst. Eng. Electron. 2020, 31, 168–184. [Google Scholar] [CrossRef]
- Shima, T.; Golan, O.M. Head pursuit guidance. J. Guid. Control Dyn. 2007, 30, 437–1444. [Google Scholar] [CrossRef]
- Wei, J.H.; Sun, Y.L.; Zhang, J. Integral sliding mode variable structure guidance law with landing angle constrain of the guided projectile. J. Ordnance Equip. Eng. 2019, 40, 103–105. (In Chinese) [Google Scholar]
- Zhou, H.; Wang, X.; Bai, B.; Cui, N. Reentry guidance with constrained impact for hypersonic weapon by novel particle swarm optimization. Aerosp. Sci. Technol. 2018, 78, 205–213. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Ma, G.X.; Wu, H.L. A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 1725–1734. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Wang, Z.; Yang, J. BPNG law with arbitrary initial lead angle and terminal impact angle constraint and time-to-go estimation. Acta Armamentarii 2019, 40, 68. [Google Scholar]
- Behnamgol, V.; Vali, A.R.; Mohammadi, A. A new adaptive finite time nonlinear guidance law to intercept maneuvering targets. Aerosp. Sci. Technol. 2017, 68, 416–421. [Google Scholar] [CrossRef]
- Taub, I.; Shima, T. Intercept angle missile guidance under time varying acceleration bounds. J. Guid. Control Dyn. 2013, 36, 686–699. [Google Scholar] [CrossRef]
- Li, H.; She, H. Trajectory shaping guidance law based on ideal line-of-sight. Acta Armamentarii 2014, 35, 1200. [Google Scholar]
- Zhao, J.; Zhou, J. Strictly convergent nonsingular terminal sliding mode guidance law with impact angle constraints. Optik 2016, 127, 10971–10980. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Q.; Zhi, Y. A TSM control scheme of integrated guidance autopilot design for UAV. In Proceedings of the 3rd IEEE International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Volume 4, pp. 431–435. [Google Scholar]
- Zhang, Y.; Sun, M.; Chen, Z. Finite-time convergent guidance law with impact angle constraint based on sliding-mode control. Nonlinear Dyn. 2012, 70, 619–625. [Google Scholar] [CrossRef]
- Kumar, S.R.; Rao, S.; Ghose, D. Nonsingular terminal sliding mode guidance with impact angle constraints. J. Guid. Control Dyn. 2014, 37, 1114–1130. [Google Scholar] [CrossRef]
- Feng, Y.; Bao, S.; Yu, X. Design method of non-singular terminal sliding mode control systems. Control Decis. 2002, 17, 194–198. (In Chinese) [Google Scholar]
- Xiong, S.; Wang, W.; Liu, X.; Wang, S.; Chen, Z. Guidance law against maneuvering targets with intercept angle constraint. ISA Trans. 2014, 53, 1332–1342. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Li, Y. Nonsingular terminal sliding-mode-based guidance law design with impact angle constraints. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 47–54. [Google Scholar] [CrossRef]
- Kumar, S.R.; Rao, S.; Ghose, D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. J. Guid. Control Dyn. 2012, 35, 1230–1246. [Google Scholar] [CrossRef]
- Song, J.; Song, S.; Zhou, H. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints. Int. J. Control Autom. Syst. 2016, 14, 99–114. [Google Scholar] [CrossRef]
- Yujie, S.I.; Shenmin, S. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets. Chin. J. Aeronaut. 2017, 30, 1985–2003. [Google Scholar]
- Song, Q.Z.; Meng, X.Y. Design and simulation of guidance law with angular constraint based on non-singular terminal sliding mode. Phys. Procedia 2012, 25, 1197–1204. [Google Scholar]
- He, S.M.; Lin, D.F. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint. Int. J. Aeronaut. Space Sci. 2014, 15, 146–152. [Google Scholar] [CrossRef]
- Xiong, S.F.; Wang, W.H.; Song, S.Y. Extended state observer based impact angleconstrained guidance law for maneuvering target interception. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2589–2607. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.-L.; Zuo, Z. Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach. Automatica 2019, 105, 406–414. [Google Scholar] [CrossRef]
- Becerra, H.M.; Vazquez, C.R.; Arechavaleta, G.; Delfin, J. Predefined-time convergence control for high-order integrator systems using time base generators. IEEE Trans. Control Syst. Technol. 2018, 26, 1866–1873. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.-L.; Zuo, Z. Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach. IEEE Trans. Autom. Control 2020, 66, 2739–2745. [Google Scholar] [CrossRef]
- Parra-Vega, V. Second order sliding mode control for robot arms with time base generators for finite-time tracking. Dyn. Control 2001, 11, 175–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Sheng, Y.; Liu, X. Impact angle constrained guidance for all-aspect interception with function-based finite-time sliding mode control. Nonlinear Dyn. 2016, 85, 1791–1804. [Google Scholar] [CrossRef]
- Ji, H.; Liu, X.; Song, Z.; Zhao, Y. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint. J. Frankl. Inst. 2018, 355, 9192–9208. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, G.; Wang, Q.; Ding, D.; Li, B.; Wang, G.; Xu, D. High-gain nonlinear active disturbance rejection control strategy for traction permanent magnet motor drives. IEEE Trans. Power Electron. 2022, 37, 13135–13146. [Google Scholar] [CrossRef]
- Wang, X.; Lu, H.; Huang, X.; Zuo, Z. Three-dimensional terminal angle constraint finite-time dual-layer guidance law with autopilot dynamics. Aerosp. Sci. Technol. 2021, 116, 106818. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Guo, B.Z. A nonlinear extended state observer based on fractional power functions. Automatica 2017, 81, 286–296. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Guo, B.Z. A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 2017, 63, 211–218. [Google Scholar] [CrossRef]
- Sheikhbahaei, R.; Khankalantary, S. Three-dimensional continuous-time integrated guidance and control design using model predictive control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2023, 237, 503–515. [Google Scholar] [CrossRef]
- Zhao, L.; Gu, S.; Zhang, J.; Li, S. Finite-time trajectory tracking control for rodless pneumatic cylinder systems with disturbances. IEEE Trans. Ind. Electron. 2021, 69, 4137–4147. [Google Scholar] [CrossRef]
- Lin, D.; Ji, Y.; Wang, W.; Wang, Y.; Wang, H.; Zhang, F. Three-dimensional impact angle-constrained adaptive guidance law considering autopilot lag and input saturation. Int. J. Robust Nonlinear Control 2020, 30, 3653–3671. [Google Scholar] [CrossRef]
- Han, L.; Mao, J.; Cao, P.; Gan, Y.; Li, S. Toward sensorless interaction force estimation for industrial robots using high-order finite-time observers. IEEE Trans. Ind. Electron. 2021, 69, 7275–7284. [Google Scholar] [CrossRef]
- Johnson, C.R. Hadamard products of matrices. Linear Multilinear Algebra 1974, 1, 295–307. [Google Scholar] [CrossRef]
- Liu, S.; Leiva, V.; Zhuang, D.; Ma, T.; Figueroa-Zúñiga, J.I. Matrix differential calculus with applications in the multivariate linear model and its diagnostics. J. Multivar. Anal. 2022, 188, 104849. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Y.; Gao, C.; An, R. Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer. Def. Technol. 2024, 32, 412–429. [Google Scholar] [CrossRef]
- Qiu, X.; Lai, P.; Gao, C.; Jing, W. Recorded recurrent deep reinforcement learning guidance laws for intercepting endoatmospheric maneuvering missiles. Def. Technol. 2024, 31, 457–470. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, L.; Guan, J.; Yi, W.; Yin, H. Intercept Guidance of Maneuvering Targets with Deep Reinforcement Learning. Int. J. Aerosp. Eng. 2023, 2023, 7924190. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Missile position (m) | (0,0,0) |
Target position (m) | (10,000,9000,5000) |
Missile speed (m/s) | 500 |
Target speed (m/s) | 300 |
Missile flight path angle () | (45,0) |
Target flight path angle () | (−30,120) |
Method | |||||
---|---|---|---|---|---|
Miss distance (m) | TBGFTTSM FNTSMGL | 0.2779 0.8495 | 0.2245 0.9794 | 0.4320 0.8365 | 0.2066 0.6139 |
Error of (°) | TBGFTTSM FNTSMGL | ||||
Interception time (s) | TBGFTTSM FNTSMGL | 28.84 32.69 | 27.97 29.47 | 27.42 26.83 | 27.17 27.66 |
Method | |||||
---|---|---|---|---|---|
Miss distance (m) | TBGFTTSM FNTSMGL | 0.4203 0.9267 | 0.2245 0.9794 | 0.1275 13230 | 0.2876 11707 |
Error of (°) | TBGFTTSM FNTSMGL | 8.98 | 15.05 | ||
Interception time (s) | TBGFTTSM FNTSMGL | 27.49 29.46 | 27.97 29.47 | 28.81 3.05 | 29.76 5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Xiao, L.; Yi, W. A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace 2025, 12, 252. https://doi.org/10.3390/aerospace12030252
Hu Z, Xiao L, Yi W. A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace. 2025; 12(3):252. https://doi.org/10.3390/aerospace12030252
Chicago/Turabian StyleHu, Zhe, Liang Xiao, and Wenjun Yi. 2025. "A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law" Aerospace 12, no. 3: 252. https://doi.org/10.3390/aerospace12030252
APA StyleHu, Z., Xiao, L., & Yi, W. (2025). A Generalized Super-Twisting Extended State Observer for Angle-Constrained Terminal Sliding Mode Guidance Law. Aerospace, 12(3), 252. https://doi.org/10.3390/aerospace12030252