Aeroacoustic Study of Synchronized Rotors
Abstract
:1. Introduction
2. Methods
2.1. Drone Noise
2.2. The Experimental Setup
2.3. Test Cases
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HBPF | Harmonics of the Blade Passing Frequency |
OASPL | Overall Sound Pressure Level |
SPSL | Sound Pressure Spectral Level |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Bu, H.; Wu, H.; Bertin, C.; Fang, Y.; Zhong, S. Aerodynamic and acoustic measurements of dual small-scale propellers. J. Sound Vib. 2021, 511, 116330. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 21–45. [Google Scholar]
- Ghommam, J.; Saad, M.; Wright, S.; Zhu, Q.M. Relay manoeuvre based fixed-time synchronized tracking control for UAV transport system. Aerosp. Sci. Technol. 2020, 103, 105887. [Google Scholar] [CrossRef]
- Wild, G.; Murray, J.; Baxter, G. Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters. Aerospace 2016, 3, 22. [Google Scholar] [CrossRef]
- Kloet, N.; Watkins, S.; Wang, X.; Prudden, S.; Clothier, R.; Palmer, J. Drone on: A preliminary investigation of the acoustic impact of unmanned aircraft systems (UAS). In Proceedings of the 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017; p. 8. [Google Scholar]
- Villasenor, J. “Drones” and the future of domestic aviation [Point of View]. Proc. IEEE 2014, 102, 235–238. [Google Scholar] [CrossRef]
- Miljković, D. Methods for attenuation of unmanned aerial vehicle noise. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0914–0919. [Google Scholar]
- Pagliaroli, T.; Candeloro, P.; Camussi, R.; Giannini, O.; Panciroli, R.; Bella, G. Aeroacoustic Study of small scale Rotors for mini Drone Propulsion: Serrated Trailing Edge Effect. In Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Gur, O.; Rosen, A. Design of a Quiet Propeller for an Electric Mini. J. Propul. Power 2009, 25, 717–728. [Google Scholar] [CrossRef]
- Gur, O.; Rosen, A. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles. J. Aircr. 2009, 46, 1340–1353. [Google Scholar] [CrossRef]
- Candeloro, P.; Nargi, R.; Patanè, F.; Pagliaroli, T. Experimental Analysis of Small-Scale Rotors with Serrated Trailing Edge for Quiet Drone Propulsion. J. Phys. 2020, 1589, 012007. [Google Scholar] [CrossRef]
- Candeloro, P.; Ragni, D.; Pagliaroli, T. Small-Scale Rotor Aeroacoustics for Drone Propulsion: A Review of Noise Sources and Control Strategies. Fluids 2022, 7, 279. [Google Scholar] [CrossRef]
- Sinibaldi, G.; Marino, L. Experimental analysis on the noise of propellers for small UAV. Appl. Acoust. 2013, 74, 79–88. [Google Scholar] [CrossRef]
- Leslie, A.; Wong, K.; Auld, D. Experimental analysis of the radiated noise from a small propeller. In Proceedings of the 20th International Congress on Acoustics, ICA, Sydney, Australia, 23–27 August 2010. [Google Scholar]
- Intravartolo, N.; Sorrells, T.; Ashkharian, N.; Kim, R. Attenuation of Vortex Noise Generated by UAV Propellers at Low Reynolds Numbers. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 2019. [Google Scholar] [CrossRef]
- Serre, R.; Chapin, V.; Moschetta, J.; Fournier, H. Reducing the noise of Micro–Air Vehicles in hover. In Proceedings of the International Micro Air Vehicle Conference and Flight Competition, Toulouse, France, 18–21 September 2017; pp. 51–59. [Google Scholar]
- Zhou, T.; Fattah, R. Tonal noise characteristics of two small-scale propellers. AIAA Pap. 2017, 4054, 2017. [Google Scholar]
- Zhou, W.; Ning, Z.; Li, H.; Hu, H. An experimental investigation on rotor-to-rotor interactions of small UAV propellers. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 3744. [Google Scholar]
- Nargi, R.E.; Candeloro, P.; De Gregorio, F.; Ceglia, G.; Pagliaroli, T. Fluid-Dynamic and Aeroacoustic Characterization of Side-by-Side Rotor Interaction. Aerospace 2023, 10, 851. [Google Scholar] [CrossRef]
- Nargi, R.E.; Gregorio, F.D.; Candeloro, P.; Ceglia, G.; Pagliaroli, T. Evolution of flow structures in twin-rotors wakes in drones by time-resolved PIV. J. Phys. Conf. Ser. 2021, 1977, 012008. [Google Scholar] [CrossRef]
- Tinney, C.; Sirohi, J. Multirotor drone noise at static thrust. AIAA J. 2018, 56, 2816–2826. [Google Scholar] [CrossRef]
- Jia, Z.; Lee, S. Acoustic analysis of urban air mobility quadrotor aircraft. In Proceedings of the Vertical Flight Society (VFS) Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA, USA, 21–23 January 2020; Volume 38, p. 17. [Google Scholar]
- JanakiRam, D.; Scruggs, B. Investigation of performance, noise and detectability characteristics of small-scale remotely piloted vehicle /RPV/ propellers. In Proceedings of the 7th Aeroacoustics Conference, Palo Alto, CA, USA, 5–7 October 1981; Volume 19, pp. 1052–1060. [Google Scholar] [CrossRef]
- Ko, J.; Kim, J.; Lee, S. Computational study of wake interaction and aeroacoustic characteristics in multirotor configurations. In Proceedings of the INTER-NOISE and NOISE-CON congress and Conference Proceedings, Madrid, Spain, 16–19 June 2019; pp. 5145–5156. [Google Scholar]
- Lee, H.; Lee, D. Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle. Phys. Fluids 2020, 32, 047107. [Google Scholar] [CrossRef]
- Schiller, N.; Pascioni, K.; Zawodny, N. Tonal noise control using rotor phase synchronization. In Proceedings of the Vertical Flight Society Annual Forum and Technology Display (VFS Forum 75), Philadelphia, PA, USA, 13–16 May 2019; number NF1676L-31452. p. 12. [Google Scholar]
- Pascioni, K.; Rizzi, S.; Schiller, N. Noise reduction potential of phase control for distributed propulsion vehicles. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1069. [Google Scholar]
- Candeloro, P.; Ragni, D.; Pagliaroli, T. Unconventional Application of Serrated Trailing Edges for Quieter Propeller Drones. In Proceedings of the 30th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, 4–7 June 2024. [Google Scholar] [CrossRef]
- Guan, S.; Lu, Y.; Su, T.; Xu, X. Noise attenuation of quadrotor using phase synchronization method. Aerosp. Sci. Technol. 2021, 118, 107018. [Google Scholar] [CrossRef]
- Shao, M.; Lu, Y.; Xu, X.; Guan, S.; Lu, J. Experimental study on noise reduction of multi-rotor by phase synchronization. J. Sound Vib. 2022, 539, 117199. [Google Scholar] [CrossRef]
- Kostek, A.A.; Braukmann, J.N.; Löβle, F.; Miesner, S.; Visingardi, A.; Boisard, R.; Riziotis, V.; Keβler, M.; Gardner, A.D. Experimental and Computational Investigation of Aerodynamic Interactions in Quadrotor Configurations. J. Am. Helicopter Soc. 2024, 69, 1–17. [Google Scholar] [CrossRef]
- Pagano, A.; Barbarino, M.; Casalino, D.; Federico, L. Tonal and broadband noise calculations for aeroacoustic optimization of a pusher propeller. J. Aircr. 2010, 47, 835–848. [Google Scholar] [CrossRef]
- Farassat, F.; Succi, G.P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 1980, 71, 399–419. Available online: https://www.sciencedirect.com/science/article/pii/0022460X80904228 (accessed on 10 September 2024). [CrossRef]
- Farassat, F. Linear Acoustic Formulas for Calculation of Rotating Blade Noise. AIAA J. 1981, 19, 1122–1130. [Google Scholar] [CrossRef]
- Thomas, R.; Farassat, F.; Clark, L.; Gerhold, C. Azimuthal patterns of the radiated sound field from a turbofan model. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 12–14 May 1997. [Google Scholar] [CrossRef]
- Whelchel, J.; Alexander, W.N.; Intaratep, N. Propeller noise in confined anechoic and open environments. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1252. [Google Scholar]
Test Case n. | [deg] | [RPM] | d/D | U∞ [m/s] |
---|---|---|---|---|
0–4 | 0 | 5200 | 1.20 | 0, 5, 10 |
5–9 | 15 | 5200 | 1.20 | 0, 5, 10 |
10–14 | 30 | 5200 | 1.20 | 0, 5, 10 |
15–19 | 45 | 5200 | 1.20 | 0, 5, 10 |
20–24 | 60 | 5200 | 1.20 | 0, 5, 10 |
25–29 | 75 | 5200 | 1.20 | 0, 5, 10 |
30–34 | 90 | 5200 | 1.20 | 0, 5, 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Duchetto, F.; Pagliaroli, T.; Candeloro, P.; Rossignol, K.-S.; Yin, J. Aeroacoustic Study of Synchronized Rotors. Aerospace 2025, 12, 162. https://doi.org/10.3390/aerospace12020162
Del Duchetto F, Pagliaroli T, Candeloro P, Rossignol K-S, Yin J. Aeroacoustic Study of Synchronized Rotors. Aerospace. 2025; 12(2):162. https://doi.org/10.3390/aerospace12020162
Chicago/Turabian StyleDel Duchetto, Fabio, Tiziano Pagliaroli, Paolo Candeloro, Karl-Stéphane Rossignol, and Jianping Yin. 2025. "Aeroacoustic Study of Synchronized Rotors" Aerospace 12, no. 2: 162. https://doi.org/10.3390/aerospace12020162
APA StyleDel Duchetto, F., Pagliaroli, T., Candeloro, P., Rossignol, K.-S., & Yin, J. (2025). Aeroacoustic Study of Synchronized Rotors. Aerospace, 12(2), 162. https://doi.org/10.3390/aerospace12020162