An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats
Abstract
1. Introduction
2. Parameters Used to Design a PlanarSat
3. Idealized Model
3.1. Minimum Recommended Satellite Area
Power-Driven Sizing Sequence
- 1.
- Peak mode power (CBE).
- 2.
- Contingency application.
- 3.
- Active solar area at the sizing point.
- 4.
- Optional orbit/incidence derating. Define as the product of the expected sunlit duty cycle and the cosine-averaged projected area for the target orbit and attitude statistics. If a team prefers to include this effect in sizing rather than in the envelope analysis of Section 5, Equation (5) becomesIn the results reported here, we set and treat off-normal incidence and eclipse explicitly in Section 5 (geometric envelope and orbit propagation from a published TLE). Teams who prefer to fold orbit statistics directly into sizing may choose ; in that case, the envelope in Section 5 should be interpreted as a geometric check rather than an additional derating to avoid double counting. As a simple illustration, a sunlit-duty factor of 0.62 and an average of 0.85 gives , increasing the required active area by a factor of at the same MEV.Here, may be taken at BOL or EOL (including temperature and spectral derating where available); using an EOL dataset directly substitutes that value in Equation (5).
- 5.
- Physical installed cell area.
- 6.
- Installed satellite area for the separated baseline.
3.2. Power Requirement Estimation of a PlanarSat
Baseline Parts and Footprints
4. Detailed Model
4.1. Architectural Implications for Minimum Surface Area
4.2. Method (Detailed Case)
4.3. Detailed Sizing Example
4.3.1. Function Blocks and Placement Area
4.3.2. Operational Modes and CBE
4.3.3. Power-Path Losses, Contingency, and Solar-Cell Sizing
4.3.4. Installed Area by Architecture
5. Operational Envelope and Design Implications
- 1 58341U 23174CP 23332.66373576 .00016972 00000-0 89307-3 0 9999
- 2 58341 97.4799 45.3459 0010400 177.2905 182.8386 15.15663121 3161
6. Sensitivity Analysis
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIAA | American Institute of Aeronautics and Astronautics |
AM0 | Air Mass Zero (extraterrestrial solar spectrum) |
Bid | bidding |
BOL | beginning of life (solar-cell rating) |
CBE | current best estimate |
CDR | critical design review |
CoDR | concept design review |
COMM | communication |
CoM | center of mass |
CoP | center of pressure |
EOL | end of life (solar-cell rating) |
FRR | flight readiness review |
IC | integrated circuit |
LEO | low Earth orbit |
LNA | low-noise amplifier |
MCU | microcontroller |
MEV | maximum expected value |
MPPT | maximum power point tracking |
OBC | on-board computer |
PA | power amplifier |
PCB | printed circuit board |
PDR | preliminary design review |
PRR | production readiness review |
RF | radio frequency |
RX | receiver (mode) |
TLE | two-line element |
TX | transmitter (mode) |
Appendix A. Operational Envelope: Derivation and Alternatives
Appendix A.1. Baseline Derivation (Used in the Paper)
Appendix A.2. Alternative A (Capacity-Margin Form)
Appendix A.3. Alternative B (Orbit/Incidence Derating)
Appendix A.4. How to Read Figure 8
References
- Uludağ, M.Ş.; Aslan, A.R. Highly-miniaturized spacecraft “PlanarSat”: Evaluating prospects and challenges through a survey of femto & atto satellite missions. Acta Astronaut. 2025, 236, 343–358. [Google Scholar] [CrossRef]
- Johnstone, A. CubeSat Design Specification. 2022. Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed on 6 June 2025).
- Radu, S.; Uludag, M.; Speretta, S.; Bouwmeester, J.; Dunn, A.; Walkinshaw, T.; Cas, P.K.D.; Cappelletti, C. The PocketQube Standard. 2018. Available online: https://static1.squarespace.com/static/53d7dcdce4b07a1cdbbc08a4/t/5b34c395352f5303fcec6f45/1530184648111/PocketQube+Standard+issue+1+-+Published.pdf (accessed on 13 June 2025).
- Franzese, V. PocketQube picosatellites: Survey of missions and technologies. CEAS Space J. 2025. [Google Scholar] [CrossRef]
- Bouwmeester, J.; Guo, J. Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut. 2010, 67, 854–862. [Google Scholar] [CrossRef]
- Barnhart, D.J.; Vladimirova, T.; Baker, A.M.; Sweeting, M.N. A low-cost femtosatellite to enable distributed space missions. Acta Astronaut. 2009, 64, 1123–1143. [Google Scholar] [CrossRef]
- Barnhart, D.J.; Vladimirova, T.; Sweeting, M.N. Very-Small-Satellite Design for Distributed Space Missions. J. Spacecr. Rocket. 2007, 44, 1294–1306. [Google Scholar] [CrossRef]
- Niccolai, L.; Bassetto, M.; Quarta, A.A.; Mengali, G. A review of Smart Dust architecture, dynamics, and mission applications. Prog. Aerosp. Sci. 2019, 106, 1–14. [Google Scholar] [CrossRef]
- STMicroelectronics. STM32L496RG—Ultra-Low-Power with FPU Arm Cortex-M4 MCU 80 MHz with 1 Mbyte Flash, USB OTG, LCD, DFSDM; STMicroelectronics: Geneva, Switzerland, 2024; Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32l496rg.html (accessed on 24 May 2025).
- Azur Space. 3G30A Triple-Junction Solar Cell Assembly Datasheet; Azur Space: Heilbronn, Germany, 2025; Available online: https://www.azurspace.com/images/products/0003401-01-01_DB_3G30A.pdf (accessed on 25 May 2025).
- Uludağ, M.Ş.; Aslan, A.R. Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats. Aerospace 2025, 12, 858. [Google Scholar] [CrossRef]
- American Institute of Aeronautics and Astronautics. Guide for Estimating and Budgeting Weight and Power Contingencies for Spacecraft Systems. 1992. Available online: https://webstore.ansi.org/preview-pages/AIAA/preview_G-020-1992.pdf (accessed on 25 May 2025).
- Brown, C.D. Elements of Spacecraft Design; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Semtech Corporation. SX1278—137MHz to 525MHz Low Power Long Range Transceiver; Semtech Corporation: Camarillo, CA, USA, 2024; Available online: https://www.semtech.com/products/wireless-rf/lora-connect/sx1278 (accessed on 24 May 2025).
- Johnson, H.W.; Graham, M. High-Speed Digital Design: A Handbook of Black Magic; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- STMicroelectronics. SPV1040—High-Efficiency Solar Battery Charger with Embedded MPPT; STMicroelectronics: Geneva, Switzerland, 2021; Available online: https://www.st.com/en/power-management/spv1040.html (accessed on 27 May 2025).
- Ravindran, R.; Massoud, A.M. State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. Aerospace 2025, 12, 97. [Google Scholar] [CrossRef]
- NASA-National Aeronautics and Space Administration. Space Vehicle Design Criteria/Guidance and Control. Technical Report, NASA. 1971. Available online: https://ntrs.nasa.gov/api/citations/19710016459/downloads/19710016459.pdf (accessed on 25 May 2025).
- Wertz, J.R.; Everett, D.F.; Puschell, J.J. (Eds.) Space Mission Engineering: The New SMAD; Microcosm Press: Hawthorne, CA, USA, 2011. [Google Scholar]
- Rawashdeh, S.A.; Lumpp, J.E. Aerodynamic Stability for CubeSats at ISS Orbit. J. Small Satell. 2013, 2, 85–104. [Google Scholar]
- Umansky-Castro, J.S.; Yap, K.G.; Peck, M.A. ChipSats for Planetary Exploration: Dynamics and Aerothermal Modeling of Atmospheric Entry and Dispersion. Front. Astron. Space Sci. 2021, 8, 664215. [Google Scholar] [CrossRef]
- Tamagawa, T.; Enoto, T.; Kitaguchi, T.; Iwakiri, W.; Kato, Y.; Numazawa, M.; Mihara, T.; Takeda, T.; Ota, N.; Watanabe, S.; et al. NinjaSat: Astronomical X-ray CubeSat observatory. Publ. Astron. Soc. Jpn. 2025, 77, 466–479. [Google Scholar] [CrossRef]
- Space-Track.org. Space–Track. 2025. Available online: https://www.space-track.org/ (accessed on 25 June 2025).
- Exolaunch. Mission 24. 2024. Available online: https://www.exolaunch.com/mission_24 (accessed on 25 June 2025).
- National Renewable Energy Laboratory. Interactive Best Research-Cell Efficiency Chart. 2025. Available online: https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed on 18 June 2025).
Symbol | Description | Units |
---|---|---|
CBE | Current Best Estimate (peak mode power demand) | mW |
MEV | Maximum Expected Value (power with contingency) | mW |
AM0 solar irradiance at Earth orbit | mW/cm2 | |
Solar-cell efficiency (electrical out/solar in) | – | |
Power-path efficiency (MPPT × regulator) | – | |
Solar-cell fill ratio (active area fraction) | – | |
Bare IC/package footprint area | cm2 | |
Electronics layout factor (area multiplier per IC) | – | |
Total electronics area (incl. /passives/routing) | cm2 | |
Active solar-cell area (electrically producing) | cm2 | |
Physical cell area () | cm2 | |
Total installed satellite surface area (sizing result) | cm2 |
Proposal Stage | Design Development Stage | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bid | CoDR | PDR | CDR | PRR/FRR | ||||||||||||||
Class | Class | Class | Class | Class | ||||||||||||||
Description/ Categories | I | II | III | I | II | III | I | II | III | I | II | III | I-II-III | |||||
0–1.2 W | 120 | 65 | 13 | 105 | 50 | 12 | 70 | 45 | 9 | 45 | 40 | 7 | 5 | |||||
1.2–5 W | 115 | 60 | 13 | 100 | 45 | 12 | 65 | 40 | 9 | 40 | 35 | 7 | 5 | |||||
5–20 W | 110 | 55 | 13 | 95 | 40 | 12 | 60 | 35 | 9 | 35 | 30 | 7 | 5 | |||||
20–50 W | 105 | 50 | 13 | 90 | 35 | 12 | 55 | 30 | 9 | 30 | 25 | 7 | 5 | |||||
50–100 W | 100 | 45 | 13 | 85 | 30 | 12 | 50 | 25 | 9 | 25 | 20 | 7 | 5 | |||||
100–500 W | 90 | 40 | 13 | 75 | 25 | 12 | 45 | 20 | 9 | 20 | 15 | 7 | 5 | |||||
500–1500 W | 80 | 35 | 13 | 65 | 22 | 12 | 40 | 15 | 9 | 15 | 10 | 7 | 5 | |||||
1500–5000 W | 70 | 30 | 13 | 60 | 20 | 12 | 30 | 15 | 9 | 15 | 10 | 7 | 5 | |||||
5000 W+ | 40 | 25 | 13 | 35 | 20 | 11 | 20 | 15 | 9 | 10 | 7 | 7 | 5 |
Mode | MCU | Payload | Receiver (RX) | Transmitter (TX) |
---|---|---|---|---|
Payload (Data Generation) | ON | ON | ON | OFF |
Transmission (Data Downlink) | ON | OFF | OFF | ON |
Mode | MCU | Payload | Transceiver (RX) | LNA | Transceiver (TX) | PA | MPPT/Reg |
---|---|---|---|---|---|---|---|
Data Acquisition | ON | ON | ON | ON | OFF | OFF | ON |
Transmit | ON | OFF | OFF | OFF | ON | ON | ON |
Standby | ON | OFF | ON | ON | OFF | OFF | ON |
Parameter | Value | Acell,tot (cm2) | Acell,phys (cm2) | (TX, deg) |
---|---|---|---|---|
Solar-cell efficiency (with the MEV being fixed at 824.1 mW) | ||||
10% | 0.10 | 60.55 | 64.42 | 60.8 |
20% | 0.20 | 30.28 | 32.21 | 60.8 |
30% (Nom.) | 0.30 | 20.18 | 21.47 | 60.8 |
45% | 0.45 | 13.46 | 14.31 | 60.8 |
Power-path efficiency (with the CBE and MEV being recomputed) | ||||
60% | 0.60 | 27.25 | 28.99 | 60.8 |
70% | 0.70 | 23.36 | 24.85 | 60.8 |
81% (Nom.) | 0.81 | 20.18 | 21.47 | 60.8 |
95% | 0.95 | 17.21 | 18.31 | 60.8 |
Fill ratio (with the MEV being fixed at 824.1 mW; is constant) | ||||
85% | 0.85 | 20.18 | 23.75 | 60.8 |
90% | 0.90 | 20.18 | 22.43 | 60.8 |
94% (Nom.) | 0.94 | 20.18 | 21.47 | 60.8 |
95% | 0.95 | 20.18 | 21.25 | 60.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uludağ, M.Ş.; Aslan, A.R. An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats. Aerospace 2025, 12, 876. https://doi.org/10.3390/aerospace12100876
Uludağ MŞ, Aslan AR. An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats. Aerospace. 2025; 12(10):876. https://doi.org/10.3390/aerospace12100876
Chicago/Turabian StyleUludağ, Mehmet Şevket, and Alim Rüstem Aslan. 2025. "An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats" Aerospace 12, no. 10: 876. https://doi.org/10.3390/aerospace12100876
APA StyleUludağ, M. Ş., & Aslan, A. R. (2025). An Analytical Framework for Determining the Minimum Size of Highly Miniaturized Satellites: PlanarSats. Aerospace, 12(10), 876. https://doi.org/10.3390/aerospace12100876