Aerodynamic Drag Coefficient Prediction of a Spike Blunt Body Based on K-Nearest Neighbors
Abstract
:1. Introduction
2. Method
2.1. Numerical Simulation and Validation
2.2. Spike Blunt Body Prototype
2.3. Dataset
2.4. k-NN Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Dataset Used for Prediction
d/D | l/D | CD Comp Ma = 1.2 | CD Comp Ma = 1.6 | CD Comp Ma = 2.0 | CD Comp Ma = 2.4 | CD Comp Ma = 2.8 | CD Comp Ma = 3.2 | CD Comp Ma = 3.6 |
0.06 | 0.15 | 0.3304 | 0.353 | 0.348 | 0.3312 | 0.3459 | 0.3032 | 0.3229 |
0.06 | 0.45 | 0.3268 | 0.3442 | 0.333 | 0.3145 | 0.2887 | 0.2645 | 0.321 |
0.06 | 0.75 | 0.3217 | 0.3291 | 0.3088 | 0.2834 | 0.2828 | 0.2738 | 0.322 |
0.06 | 1.05 | 0.3165 | 0.3197 | 0.3133 | 0.2891 | 0.2749 | 0.2728 | 0.3027 |
0.06 | 1.35 | 0.3117 | 0.3213 | 0.3016 | 0.274 | 0.28 | 0.2719 | 0.3139 |
0.06 | 1.65 | 0.3122 | 0.3053 | 0.3028 | 0.2783 | 0.299 | 0.2973 | 0.3084 |
0.06 | 1.95 | 0.2971 | 0.2863 | 0.33 | 0.2711 | 0.2861 | 0.2993 | 0.3162 |
0.09 | 0.15 | 0.3307 | 0.3533 | 0.3483 | 0.3321 | 0.2992 | 0.2976 | 0.329 |
0.09 | 0.45 | 0.3236 | 0.3358 | 0.3213 | 0.313 | 0.3322 | 0.2569 | 0.3198 |
0.09 | 0.75 | 0.313 | 0.3152 | 0.2941 | 0.283 | 0.2714 | 0.2621 | 0.3133 |
0.09 | 1.05 | 0.3016 | 0.3007 | 0.2827 | 0.2744 | 0.2593 | 0.2658 | 0.2831 |
0.09 | 1.35 | 0.298 | 0.2898 | 0.2752 | 0.2554 | 0.267 | 0.2495 | 0.3072 |
0.09 | 1.65 | 0.3005 | 0.2913 | 0.2818 | 0.279 | 0.2862 | 0.2638 | 0.2898 |
0.09 | 1.95 | 0.2915 | 0.2925 | 0.3229 | 0.2961 | 0.2783 | 0.2772 | 0.3098 |
0.12 | 0.15 | 0.3322 | 0.3541 | 0.3479 | 0.331 | 0.297 | 0.295 | 0.3311 |
0.12 | 0.45 | 0.3161 | 0.321 | 0.3077 | 0.287 | 0.2791 | 0.25 | 0.3162 |
0.12 | 0.75 | 0.307 | 0.3042 | 0.2821 | 0.285 | 0.2632 | 0.2617 | 0.2996 |
0.12 | 1.05 | 0.2969 | 0.2895 | 0.2851 | 0.266 | 0.2478 | 0.2469 | 0.2824 |
0.12 | 1.35 | 0.2883 | 0.2828 | 0.2683 | 0.2422 | 0.2546 | 0.257 | 0.2367 |
0.12 | 1.65 | 0.2861 | 0.2902 | 0.2535 | 0.2455 | 0.2743 | 0.2673 | 0.2617 |
0.12 | 1.95 | 0.2821 | 0.2881 | 0.3087 | 0.2874 | 0.2776 | 0.2718 | 0.3012 |
0.15 | 0.15 | 0.3337 | 0.3549 | 0.3464 | 0.3294 | 0.2938 | 0.2927 | 0.33 |
0.15 | 0.45 | 0.3122 | 0.3166 | 0.3017 | 0.291 | 0.2703 | 0.2614 | 0.3122 |
0.15 | 0.75 | 0.3007 | 0.2995 | 0.2896 | 0.2823 | 0.2478 | 0.2474 | 0.2964 |
0.15 | 1.05 | 0.2975 | 0.2864 | 0.2785 | 0.2541 | 0.2349 | 0.2309 | 0.2774 |
0.15 | 1.35 | 0.2813 | 0.275 | 0.2643 | 0.249 | 0.2406 | 0.2373 | 0.2414 |
0.15 | 1.65 | 0.2854 | 0.2843 | 0.2737 | 0.255 | 0.2569 | 0.2584 | 0.2731 |
0.15 | 1.95 | 0.2734 | 0.2785 | 0.299 | 0.2771 | 0.2678 | 0.2669 | 0.2746 |
0.18 | 0.15 | 0.3393 | 0.3578 | 0.3454 | 0.3306 | 0.2926 | 0.2994 | 0.3227 |
0.18 | 0.45 | 0.311 | 0.3139 | 0.3012 | 0.2869 | 0.2671 | 0.2623 | |
0.18 | 0.75 | 0.2958 | 0.2941 | 0.2881 | 0.2705 | 0.2392 | 0.2356 | |
0.18 | 1.05 | 0.2938 | 0.2851 | 0.2843 | 0.259 | 0.2233 | 0.2211 | |
0.18 | 1.35 | 0.2798 | 0.27 | 0.2617 | 0.24 | 0.2289 | 0.2244 | |
0.18 | 1.65 | 0.2779 | 0.2733 | 0.2436 | 0.2516 | 0.242 | 0.2421 | |
0.18 | 1.95 | 0.2702 | 0.2528 | 0.2931 | 0.2714 | 0.2522 | 0.2314 |
References
- Anderson, J.D. Fundamentals of Aerodynamics, 6th ed.; McGraw-Hill: New York, NY, USA, 2017. [Google Scholar]
- Rashid, S.; Nawaz, F.; Maqsood, A.; Salamat, S.; Riaz, R. Review of Wave Drag Reduction Techniques: Advances in Active, Passive, and Hybrid Flow Control. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2022, 236, 2851–2884. [Google Scholar] [CrossRef]
- Bertin, J.J.; Cummings, R.M. Fifty Yxears of Hypersonics: Where We’ve Been, Where We’re Going. Prog. Aerosp. Sci. 2003, 39, 511–536. [Google Scholar] [CrossRef]
- Bertin, J.J.; Bouslog, S.A.; Wang, K.-C.; Campbell, C.H. Recent Aerothermodynamic Flight Measurements during Shuttle Orbiter Re-Entry. J. Spacecr. Rocket. 1996, 33, 457–462. [Google Scholar] [CrossRef]
- Schneider, S.P. Flight Data for Boundary-Layer Transition at Hypersonic and Supersonic Speeds. J. Spacecr. Rocket. 1999, 36, 8–20. [Google Scholar] [CrossRef]
- Hollis, B.R.; Borrelli, S. Aerothermodynamics of Blunt Body Entry Vehicles. Prog. Aerosp. Sci. 2012, 48–49, 42–56. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Z.; Yan, L.; Yan, B.; Du, Z. Drag and Heat Flux Reduction Mechanism Induced by the Spike and Its Combinations in Supersonic Flows: A Review. Prog. Aerosp. Sci. 2019, 105, 31–39. [Google Scholar] [CrossRef]
- Guenther, R.A.; Reding, J.P. Fluctuating Pressure Environment of a Drag Reduction Spike. J. Spacecr. Rocket. 1977, 14, 705–710. [Google Scholar] [CrossRef]
- Ahmed, M.Y.M.; Qin, N. Recent Advances in the Aerothermodynamics of Spiked Hypersonic Vehicles. Prog. Aerosp. Sci. 2011, 47, 425–449. [Google Scholar] [CrossRef]
- Esfeh, M.K.; Tajalli, S.M.; Liu, P. Evaluation of Aerospike for Drag Reduction on a Blunt Nose Using Experimental and Numerical Modeling. Acta Astronaut. 2019, 160, 656–671. [Google Scholar] [CrossRef]
- Tekure, V.; Pophali, P.S.; Venkatasubbaiah, K. Numerical Investigation of Aerospike Semi-Cone Angle and a Small Bump on the Spike Stem in Reducing the Aerodynamic Drag and Heating of Spiked Blunt-Body: New Correlations for Drag and Surface Temperature. Phys. Fluids 2021, 33, 116108. [Google Scholar] [CrossRef]
- Kalimuthu, R.; Mehta, R.C.; Rathakrishnan, E. Investigation of Aerodynamic Coefficients at Mach 6 over Conical, Hemispherical and Flat-Face Spiked Body. Aeronaut. J. 2017, 121, 1711–1732. [Google Scholar] [CrossRef]
- Li, Z.; Sun, C.; Xia, X.; Li, X. Numerical Simulation of Aerodynamic Heating over Solid Blunt Configuration with Porous Spike. J. Aerosp. Eng. 2018, 31, 04018083. [Google Scholar] [CrossRef]
- Asif, M.; Zahir, S.; Kamran, N.; Khan, M. Computational Investigations Aerodynamic Forces at Supersonic/Hypersonic Flow Past a Blunt Body with Various Forward Facing Spikes. In Proceedings of the 22nd Applied Aerodynamics Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, AIAA, Providence, RI, USA, 16–19 August 2004. [Google Scholar]
- Xue, Y.; Wang, L.; Fu, S. Drag Reduction and Aerodynamic Shape Optimization for Spike-Tipped Supersonic Blunt Nose. J. Spacecr. Rocket. 2018, 55, 552–560. [Google Scholar] [CrossRef]
- Hamza, M.; Khan, S.B.; Maqsood, A. Geometric Optimization of Blunt Bodies with Aerodisk and Opposing Jet for Wave Drag and Heat Reduction. Aerospace 2022, 9, 800. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Vinuesa, R.; Brunton, S.L. Enhancing Computational Fluid Dynamics with Machine Learning. Nat. Comput. Sci. 2022, 2, 358–366. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. Data-Driven Modeling for Unsteady Aerodynamics and Aeroelasticity. Prog. Aerosp. Sci. 2021, 125, 100725. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Martins, J.R.R.A. Machine Learning in Aerodynamic Shape Optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Bianco, M.J.; Gerstoft, P.; Traer, J.; Ozanich, E.; Roch, M.A.; Gannot, S.; Deledalle, C.-A. Machine Learning in Acoustics: Theory and Applications. J. Acoust. Soc. Am. 2019, 146, 3590–3628. [Google Scholar] [CrossRef]
- Kužnar, D.; Možina, M.; Giordanino, M.; Bratko, I. Improving Vehicle Aeroacoustics Using Machine Learning. Eng. Appl. Artif. Intell. 2012, 25, 1053–1061. [Google Scholar] [CrossRef]
- Alguacil, A.; Bauerheim, M.; Jacob, M.C.; Moreau, S. Predicting the Propagation of Acoustic Waves Using Deep Convolutional Neural Networks. J. Sound Vib. 2021, 512, 116285. [Google Scholar] [CrossRef]
- Salehi, H.; Das, S.; Chakrabartty, S.; Biswas, S.; Burgueño, R. Damage Identification in Aircraft Structures with Self-Powered Sensing Technology: A Machine Learning Approach. Struct. Control Health Monit. 2018, 25, e2262. [Google Scholar] [CrossRef]
- de Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.; Jain, A.; Asta, M.; Gamst, A. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-Nary Inorganic Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256. [Google Scholar] [CrossRef] [PubMed]
- Linse, D.J.; Stengel, R.F. Identification of Aerodynamic Coefficients Using Computational Neural Networks. J. Guid. Control Dyn. 1993, 16, 1018–1025. [Google Scholar] [CrossRef]
- Suresh, S.; Omkar, S.N.; Mani, V.; Guru Prakash, T.N. Lift Coefficient Prediction at High Angle of Attack Using Recurrent Neural Network. Aerosp. Sci. Technol. 2003, 7, 595–602. [Google Scholar] [CrossRef]
- Secco, N.R.; De Mattos, B.S. Artificial Neural Networks to Predict Aerodynamic Coefficients of Transport Airplanes. Aircr. Eng. Aerosp. Technol. 2017, 89, 211–230. [Google Scholar] [CrossRef]
- Ghoreyshi, M.; Jirásek, A.; Cummings, R.M. Computational Approximation of Nonlinear Unsteady Aerodynamics Using an Aerodynamic Model Hierarchy. Aerosp. Sci. Technol. 2013, 28, 133–144. [Google Scholar] [CrossRef]
- Wang, X.; Kou, J.; Zhang, W. Unsteady Aerodynamic Modeling Based on Fuzzy Scalar Radial Basis Function Neural Networks. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2019, 233, 5107–5121. [Google Scholar] [CrossRef]
- Hou, W.; Darakananda, D.; Eldredge, J.D. Machine-Learning-Based Detection of Aerodynamic Disturbances Using Surface Pressure Measurements. AIAA J. 2019, 57, 5079–5093. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Numerical Basis of CAD-Embedded CFD: White Paper. Available online: https://www.solidworks.com/sw/docs/Flow_Basis_of_CAD_Embedded_CFD_Whitepaper.pdf (accessed on 1 June 2024).
- Ingram, D.M.; Causon, D.M.; Mingham, C.G. Developments in Cartesian Cut Cell Methods. Math. Comput. Simul. 2003, 61, 561–572. [Google Scholar] [CrossRef]
- Hodges, A.J. The Drag Coefficient of Very High Velocity Spheres. J. Aeronaut. Sci. 1957, 24, 755–758. [Google Scholar] [CrossRef]
- Charters, A.C.; Thomas, R.N. The Aerodynamic Performance of Small Spheres from Subsonic to High Supersonic Velocities. J. Aeronaut. Sci. 1945, 12, 468–476. [Google Scholar] [CrossRef]
- Ahmad, H.; Hasan, N.; Sanghi, S. On the Influence of Co-Flow on the Shocks and Vortex Rings in the Starting Phases of under-Expanded Jets. Phys. Fluids 2022, 34, 076117. [Google Scholar] [CrossRef]
- Tahani, M.; Karimi, M.S.; Motlagh, A.M.; Mirmahdian, S. Numerical Investigation of Drag and Heat Reduction in Hypersonic Spiked Blunt Bodies. Heat Mass Transf. 2013, 49, 1369–1384. [Google Scholar] [CrossRef]
- Ahmed, M.Y.M.; Qin, N. Metamodels for aerothermodynamic design optimization of hypersonic spiked blunt bodies. Aerosp. Sci. Technol. 2010, 14, 364–376. [Google Scholar] [CrossRef]
- Krishnayatra, G.; Tokas, S.; Kumar, R. Numerical Heat Transfer Analysis & Predicting Thermal Performance of Fins for a Novel Heat Exchanger Using Machine Learning. Case Stud. Therm. Eng. 2020, 21, 100706. [Google Scholar] [CrossRef]
Pressure (P, atm) | Temperature (T, K) | Viscosity (μ, Pa·s) | Density (ρ, kg/m3) | Gas Constant (Rg, kJ/kg·K) | Speed of Sound (c, m/s) |
---|---|---|---|---|---|
1.0 | 290 | 1.8 × 10−5 | 0.816 | 0.287 | 340 |
Ma | Re |
---|---|
1.2 | 4.7 × 105 |
1.6 | 6.2 × 105 |
2.0 | 7.8 × 105 |
2.4 | 9.3 × 105 |
2.8 | 1.0 × 106 |
3.2 | 1.2 × 106 |
Ma | CD,average | CD,min | CD,max |
---|---|---|---|
1.6 | 0.306 | 0.253 | 0.358 |
2.4 | 0.282 | 0.240 | 0.332 |
3.2 | 0.263 | 0.221 | 0.299 |
Sample Size | # of Points < 10% Error | % Accuracy |
---|---|---|
168 | 150 | 89% |
120 | 103 | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Muñoz, J.A.; Lagarza-Cortés, C.; Ramírez-Cruz, J. Aerodynamic Drag Coefficient Prediction of a Spike Blunt Body Based on K-Nearest Neighbors. Aerospace 2024, 11, 757. https://doi.org/10.3390/aerospace11090757
Sánchez Muñoz JA, Lagarza-Cortés C, Ramírez-Cruz J. Aerodynamic Drag Coefficient Prediction of a Spike Blunt Body Based on K-Nearest Neighbors. Aerospace. 2024; 11(9):757. https://doi.org/10.3390/aerospace11090757
Chicago/Turabian StyleSánchez Muñoz, Jonathan Arturo, Christian Lagarza-Cortés, and Jorge Ramírez-Cruz. 2024. "Aerodynamic Drag Coefficient Prediction of a Spike Blunt Body Based on K-Nearest Neighbors" Aerospace 11, no. 9: 757. https://doi.org/10.3390/aerospace11090757
APA StyleSánchez Muñoz, J. A., Lagarza-Cortés, C., & Ramírez-Cruz, J. (2024). Aerodynamic Drag Coefficient Prediction of a Spike Blunt Body Based on K-Nearest Neighbors. Aerospace, 11(9), 757. https://doi.org/10.3390/aerospace11090757