Statistical Metamodel of Liner Acoustic Impedance Based on Neural Network and Probabilistic Learning for Small Datasets
Abstract
1. Introduction
2. Control Parameters and ACM Dataset
3. Prior Probabilistic Model of the Frequency-Sampled Impedance Vector
3.1. PCA-Based Statistical Reduction of
3.2. Prior Conditional Probabilistic Density Function of Given
3.3. Statistically Independent Realizations of and Given
4. Statistical ANN-Based Metamodel
4.1. Fully Connected Feedforward Neural Network
4.2. Statistical ANN-Based Metamodel for Regression with the Learned Dataset
4.3. Statistical ANN-Based Metamodel for Regression with a Learned GKDE-Based Estimates’ Dataset
5. Numerical Applications
5.1. Architecture of the Statistical ANN-Based Metamodel
5.2. Statistical Convergence Analysis for the Learned GKDE-Based Estimates’ Dataset
5.3. Conditional Covariance Matrices of and Given
5.4. Frequency-Sampled Impedance Using the Statistical ANN-Based Metamodel
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Conditional covariance matrix of given | |
Covariance matrix of | |
Conditional covariance matrix of given | |
Conditional covariance matrix of given | |
Mathematical expectation operator | |
Cost function for ANN training | |
Number of values in | |
Number of control parameters | |
Number of sampled frequencies | |
Conditional probability density functions | |
Probability density function of | |
Resistance from the ACM | |
s | Silverman bandwidth |
Reactance from the ACM | |
j-th realization of conditional mean | |
Random vectors for impedance, resistance, and reactance | |
Empirical mean value of | |
j-th frequency-sampled impedance from the ACM | |
k-th realization of frequency-sampled impedance given | |
ℓ-th additional realization of frequency-sampled impedance | |
j-th frequency-sampled resistance from the ACM | |
Control parameters (POA and SPL) | |
j-th realization of control parameters | |
Rewriting (with repetition) of | |
ℓ-th additional realization of control parameters | |
Random vector of control parameters | |
Frequency-dependent acoustic impedance from the ACM | |
j-th realization of covariance matrix parameters | |
Diagonal matrix of eigenvalues | |
Matrix of eigenvectors | |
Normalized random vector from PCA | |
ANN output for conditional mean of given | |
ANN output for vectorized upper triangular elements of the matrix logarithm of | |
Negative log-likelihood | |
Frequency (rad/s) | |
Parameters of the ANN | |
ACM | Aeroacoustic computational model |
ANN | Artificial neural network |
BPF | Blade passing frequency |
GKDE | Gaussian kernel density estimation |
MaxEnt | Maximum entropy |
PCA | Principal component analysis |
PLoM | Probabilistic learning on manifolds |
POA | Percentage of open area |
SPL | Sound pressure level |
UHBR | Ultra-high bypass ratio |
ACM dataset | |
Training dataset | |
Learned dataset | |
GKDE-based estimates’ dataset | |
Set of control parameter values |
References
- van Den Nieuwenhof, B.; Detandt, Y.; Lielens, G.; Rosseel, E.; Soize, C.; Dangla, V.; Kassem, M.; Mosson, A. Optimal design of the acoustic treatments damping the noise radiated by a turbo-fan engine. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June 2017; p. 4035. [Google Scholar] [CrossRef]
- Nark, D.M.; Jones, M.G. Design of an advanced inlet liner for the quiet technology demonstrator 3. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; p. 2764. [Google Scholar] [CrossRef]
- Sutliff, D.L.; Nark, D.M.; Jones, M.G.; Schiller, N.H. Design and acoustic efficacy of a broadband liner for the inlet of the DGEN aero-propulsion research turbofan. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; p. 2582. [Google Scholar] [CrossRef]
- Chambers, A.T.; Manimala, J.M.; Jones, M.G. Design and optimization of 3D folded-core acoustic liners for enhanced low-frequency performance. AIAA J. 2020, 58, 206–218. [Google Scholar] [CrossRef]
- Özkaya, E.; Gauger, N.R.; Hay, J.A.; Thiele, F. Efficient Design Optimization of Acoustic Liners for Engine Noise Reduction. AIAA J. 2020, 58, 1140–1156. [Google Scholar] [CrossRef]
- Dangla, V.; Soize, C.; Cunha, G.; Mosson, A.; Kassem, M.; Van den Nieuwenhof, B. Robust three-dimensional acoustic performance probabilistic model for nacelle liners. AIAA J. 2021, 59, 4195–4211. [Google Scholar] [CrossRef]
- Spillere, A.M.; Braga, D.S.; Seki, L.A.; Bonomo, L.A.; Cordioli, J.A.; Rocamora, B.M., Jr.; Greco, P.C., Jr.; dos Reis, D.C.; Coelho, E.L. Design of a single degree of freedom acoustic liner for a fan noise test rig. Int. J. Aeroacoust. 2021, 20, 708–736. [Google Scholar] [CrossRef]
- Lavieille, M.; Abboud, T.; Bennani, A.; Balin, N. Numerical simulations of perforate liners: Part I—Model description and impedance validation. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar] [CrossRef]
- Van Antwerpen, B.; Detandt, Y.; Copiello, D.; Rosseel, E.; Gaudry, E. Performance improvements and new solution strategies of Actran/TM for nacelle simulations. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 16–20 June 2014; p. 2315. [Google Scholar] [CrossRef]
- Pascal, L.; Piot, E.; Casalis, G. A new implementation of the extended Helmholtz resonator acoustic liner impedance model in time domain CAA. J. Comput. Acoust. 2016, 24, 1663–1674. [Google Scholar] [CrossRef]
- Casadei, L.; Deniau, H.; Piot, E.; Node-Langlois, T. Time-domain impedance boundary condition implementation in a CFD solver and validation against experimental data of acoustical liners. In Proceedings of the eForum Acusticum, Digital Event, 7–11 December 2020; pp. 359–366. [Google Scholar] [CrossRef]
- Dangla, V.; Soize, C.; Cunha, G.; Mosson, A.; Kassem, M.; Van Den Nieuwenhof, B. Stochastic computational model of 3D acoustic noise predictions for nacelle liners. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 2545. [Google Scholar] [CrossRef]
- Winkler, J.; Mendoza, J.M.; Reimann, C.A.; Homma, K.; Alonso, J.S. High fidelity modeling tools for engine liner design and screening of advanced concepts. Int. J. Aeroacoust. 2021, 20, 530–560. [Google Scholar] [CrossRef]
- Soize, C.; Ghanem, R. Data-driven probability concentration and sampling on manifold. J. Comput. Phys. 2016, 321, 242–258. [Google Scholar] [CrossRef]
- Soize, C.; Ghanem, R. Probabilistic learning on manifolds. Found. Data Sci. 2020, 2, 279–307. [Google Scholar] [CrossRef]
- Soize, C.; Ghanem, R. Probabilistic learning on manifolds (PLoM) with partition. Int. J. Numer. Methods Eng. 2022, 123, 268–290. [Google Scholar] [CrossRef]
- Soize, C. Software_PLoM_with_PARTITION_2021_06_24, 2021.
- Sinha, A.; Soize, C.; Desceliers, C.; Cunha, G. Aeroacoustic liner impedance metamodel from simulation and experimental data using probabilistic learning. AIAA J. 2023, 61, 4926–4934. [Google Scholar] [CrossRef]
- Soize, C. Uncertainty Quantification; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Luenberger, D. Optimization by Vector Space Methods; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Calamai, P.H.; Moré, J.J. Projected gradient methods for linearly constrained problems. Math. Program. 1987, 39, 93–116. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; Proceedings of Machine Learning Research. Teh, Y.W., Titterington, M., Eds.; Volume 9, pp. 249–256. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, A.; Desceliers, C.; Soize, C.; Cunha, G. Statistical Metamodel of Liner Acoustic Impedance Based on Neural Network and Probabilistic Learning for Small Datasets. Aerospace 2024, 11, 717. https://doi.org/10.3390/aerospace11090717
Sinha A, Desceliers C, Soize C, Cunha G. Statistical Metamodel of Liner Acoustic Impedance Based on Neural Network and Probabilistic Learning for Small Datasets. Aerospace. 2024; 11(9):717. https://doi.org/10.3390/aerospace11090717
Chicago/Turabian StyleSinha, Amritesh, Christophe Desceliers, Christian Soize, and Guilherme Cunha. 2024. "Statistical Metamodel of Liner Acoustic Impedance Based on Neural Network and Probabilistic Learning for Small Datasets" Aerospace 11, no. 9: 717. https://doi.org/10.3390/aerospace11090717
APA StyleSinha, A., Desceliers, C., Soize, C., & Cunha, G. (2024). Statistical Metamodel of Liner Acoustic Impedance Based on Neural Network and Probabilistic Learning for Small Datasets. Aerospace, 11(9), 717. https://doi.org/10.3390/aerospace11090717