Research on Convective Cooling and Thermal Protection Characteristics of Integrated Dual-Sided Deflector System
Abstract
:1. Introduction
2. The Basic Physical Model
3. Numerical Simulation Models
3.1. Physical Model Design
3.2. Grid Generation and Boundary Conditions
3.3. Grid Independence Verification
3.4. Experimental Validation of the Vaporization Model
4. Numerical Computation and Result Analysis
4.1. Effectiveness of Gas Flow Control
4.2. Improvement in the Flow Field Environment
4.2.1. Propagation of Pressure Disturbances
4.2.2. Temperature Variation Process
4.2.3. The Degree of Vaporization of Liquid Water
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kristian, R.; Christophe, D. Heat transfer and associated coherent structures of a single impinging jet from a round nozzle. Int. J. Heat Mass Transf. 2021, 173, 121197. [Google Scholar]
- Dalle, D.J.; Rogers, S.E.; Meeroff, J.G.; Burkhead, A.C.; Schauerhamer, D.G.; Diaz, J.F. Launch vehicle ascent computational fluid dynamics for the space launch system. J. Spacecr. Rocket. 2023, 61, 473–486. [Google Scholar] [CrossRef]
- Faheem, M.; Khan, A.; Kuma, R.; Khan, S.A.; Asrar, W.; Sapardi, A.M. Experimental study on the mean flow characteristic of a supersonic multiple jet configuration. Aerosp. Sci. Technol. 2021, 108, 106377. [Google Scholar] [CrossRef]
- Norris, R.S.; Kristensen, H.M. Nuclear U.S and Soviet/Russian intercontinental ballistic missiles. Bull. At. Sci. 2009, 65, 62–69. [Google Scholar] [CrossRef]
- Vu, B.T.; Bachchan, N.; Peroomian, O.; Akdag, V. Multiphase modeling of water injection on flame deflector. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Deigo, CA, USA, 24–27 June 2013. [Google Scholar]
- Li, J.; Jiang, Y.; Yu, S.Z.; Zhou, F. Cooling effect of water injection on a high-temperature supersonic jet. Energies 2015, 8, 13194–13210. [Google Scholar] [CrossRef]
- Lu, C.Y.; Zhou, Z.T.; Shi, Y.; Bao, Y.Y.; Le, G.G. Numerical simulations of water spray on launch pad during rocket launching. Spacecr. Rocket. 2021, 58, 566–574. [Google Scholar] [CrossRef]
- Zhou, Z.T.; Lu, C.Y.; Zhao, C.F.; Le, G.G. Numerical simulations of water spray on flame deflector during the four-engine rocket launching. Adv. Space Res. 2020, 65, 1296–1305. [Google Scholar] [CrossRef]
- Zhou, Z.T.; Zhang, L.J.; Le, G.G. Numerical study for the flame deflector design of four-engine liquid rockets. Eng. Appl. Comput. Fluid Mech. 2020, 14, 726–737. [Google Scholar] [CrossRef]
- Zhou, Z.T.; Sun, P.J.; Bao, Y.Y. Numerical simulations of thermal environment of the rocket impingement jet with afterburning under different water spray angles. Aerosp. Sci. Technol. 2022, 121, 107308. [Google Scholar] [CrossRef]
- Ji, T.Y. Numerical Study on Water Injection Cooling of Gas Plume in Solid Rocket Motor; Harbin Engineering University: Harbin, China, 2020. [Google Scholar]
- Xiong, Y. Numerical Simulation Study on High Temperature Gas Cooling System of Solid Rocket Motor; Academy of Aerospace Solid Propulsion Technology: Xi’an, China, 2021. [Google Scholar]
- Luo, T.P.; Liu, R.M.; Li, M.; Zhang, J.X. Numerical study on spray cooling of test bench flow channel based on DPM. Aerosp. Power 2018, 33, 497–507. [Google Scholar]
- Fang, B.; Zhao, T.S. The “Starship” explosion aftermath appearance of the launch pad damage. Beijing Bus. News 2023, 8. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.J.; Liu, W.; Jin, X. Smart dragon 3 launch vehicle system. Aerosp. China 2022, 23, 3–10. [Google Scholar]
- Zhang, M.M.; Jiang, Y.; Shi, S.Y.; Deng, Y.G. Influence on flow field of hot launch in a W-shaped underground space by water injection. J. Acta Armamentarii 2023, 44, 1158–1170. [Google Scholar]
- Lee, W.H. A pressure iteration scheme for two-phase flow modeling. In Computational Methods for Two-Phase Flow and Particle Transport; Toh Tuck Link: Singapore, 1979; pp. 61–82. [Google Scholar]
- Hertz, H. On the evaporation of liquids, especially mercury, in vacuo. Ann. Der Phys. 1882, 17, 177. [Google Scholar]
- Knudsen, M. Maximum rate of vaporization of mercury. Ann. Der Phys. 1915, 47, 697. [Google Scholar]
- Da, R.E.; Del, C.D. Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel. J. Heat Transf. Trans. ASME 2012, 135, 051019. [Google Scholar]
- Da, R.E.; Del, C.D.; Garimell, S.V.; Cavallini, A. The importance of turbulence during condensation in a horizontal circular minichannel. Int. J. Heat Transf. 2012, 55, 3470–3481. [Google Scholar]
- Deschepper, C.K.; Heynderickx, G.J.; Marin, G.B. Modeling the evaporation of a hydrocarbon feedstock in the convection of a steam cracker. Comput. Chem. Eng. 2009, 33, 122–132. [Google Scholar] [CrossRef]
- Wu, H.L.; Peng, X.F.; Ye, P.; Gong, Y.E. Simulation of refrigerant flow boiling in the serpentine tubes. Int. J. Heat Mass Transf. 2007, 50, 1186–1195. [Google Scholar] [CrossRef]
- Bortolin, S.; Da, R.E.; Del, C.D. Condensation in a square minichannel: Application of the VOF method. Heat Transf. Eng. 2014, 35, 193–203. [Google Scholar] [CrossRef]
- Qiu, G.D.; Cao, W.H.; Wu, Z.Y.; Jiang, Y. Analysis on the value of coefficient of mass transfer with phase change in Lee’s equation. J. Harbin Inst. Technol. 2014, 46, 15–19. [Google Scholar]
- Chen, G.; Nien, T.T.; Yan, X.H. An explicit expression of the empirical factor in a widely used phase change model. Int. J. Heat Mass Transf. 2020, 150, 119279. [Google Scholar] [CrossRef]
- Wang, X.D. Model Study of Mass Transfer at Gas-Liquid Interface; Xiangtan University: Xiangtan, China, 2021. [Google Scholar]
- Fu, J. Analytical Model Development and Numerical Simulation of Gas-Liquid Interface Mass Transfer; Xiangtan University: Xiangtan, China, 2017. [Google Scholar]
- Zhou, Y.Q.; Wang, W.W.; Duan, J.H. Research progress on bubble motion behavior in liquids. Pet. Refin. Eng. 2023, 53, 5–8. [Google Scholar]
- Shen, Y.; Zhang, L.L.; Wu, Y.R.; Chen, W.Z. The role of the bubbles-bubble interaction on radial pulsations of bubbles. Ultrason. Sonochemistry 2021, 73, 105535. [Google Scholar] [CrossRef]
- Li, W.P.; Cao, S.Y.; Liu, X.N. Effects of grain shape on incipient motion of non-uniform sediment. Adv. Water Sci. 2007, 3, 342–345. [Google Scholar]
- Xiao, Y.; Meng, M.; Daouadji, A.; Chen, Q.S.; Wu, Z.J.; Jiang, X. Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci. Front. 2020, 11, 375–388. [Google Scholar] [CrossRef]
- Lv, Y.R.; Wang, C.; Huang, H.X.; Zuo, D.J. Study on particle structure and crushing behaviors of coral sand. Rock Soil Mech. 2021, 42, 352–360. [Google Scholar]
- Zhan, G. Design and Research of Gas-Liquid Booster Pump; Donghua University: Shanghai, China, 2024. [Google Scholar]
- Zhou, P. Design on hydraulic pressure boosting system for forging press. Forg. Stamp. Technol. 2024, 49, 189–195. [Google Scholar]
- Wang, W.P.; Liu, F.S.; Zhang, N.C. Structural transformation of liquid water under shock compression condition. Acta Phys. Sin. 2014, 63, 270–274. [Google Scholar]
- Zhang, X.W.; Pan, L.; Wang, L.; Zou, J.J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chem. Eng. Sci. 2018, 180, 95–125. [Google Scholar] [CrossRef]
Parameters | The Number of Grid Cells (Million) | |||
---|---|---|---|---|
4.44 | 6.42 | 8.74 | 10.92 | |
The dimensions of the nozzle throat (mm) | 25 | 20 | 15 | 10 |
The dimensions of the liquid water orifices (mm) | 12 | 10 | 8 | 6 |
The computing time (day) | 8 | 10 | 16 | 27 |
Monitoring Points | Experimental Data | The Classical Lee Model | The Improved Lee Model |
---|---|---|---|
A | - | 0.292% | 0.291% |
B | - | 0.743% | 0.443% |
C | - | 0.339% | 0.271% |
D | - | 0.567% | 0.101% |
Monitoring Point | Traditional | Conventional | Integrated | Conventional Percentage Reduction | Integrated Percentage Reduction |
---|---|---|---|---|---|
Temperature (K) | Temperature (K) | Temperature (K) | |||
P11 | 3446.08 | 3419.80 | 300 | 0.76% | 91.29% |
P21 | 3485.52 | 3445.16 | 416.73 | 1.16% | 88.05% |
P31 | 2820.63 | 2376.82 | 413.11 | 15.73% | 85.35% |
P41 | 2642.29 | 836.62 | 359.83 | 13.62% | 86.39% |
P22 | 3133.88 | 3132.35 | 725.08 | 23.14% | 76.86% |
P33 | 3152.55 | 2897.58 | 578.36 | 18.35% | 81.65% |
P44 | 3035.03 | 2360.15 | 468.71 | 15.44% | 84.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Jiang, Y.; Deng, Y. Research on Convective Cooling and Thermal Protection Characteristics of Integrated Dual-Sided Deflector System. Aerospace 2024, 11, 501. https://doi.org/10.3390/aerospace11070501
Zhang M, Jiang Y, Deng Y. Research on Convective Cooling and Thermal Protection Characteristics of Integrated Dual-Sided Deflector System. Aerospace. 2024; 11(7):501. https://doi.org/10.3390/aerospace11070501
Chicago/Turabian StyleZhang, Manman, Yi Jiang, and Yueguang Deng. 2024. "Research on Convective Cooling and Thermal Protection Characteristics of Integrated Dual-Sided Deflector System" Aerospace 11, no. 7: 501. https://doi.org/10.3390/aerospace11070501
APA StyleZhang, M., Jiang, Y., & Deng, Y. (2024). Research on Convective Cooling and Thermal Protection Characteristics of Integrated Dual-Sided Deflector System. Aerospace, 11(7), 501. https://doi.org/10.3390/aerospace11070501