Research on the Movement Speed of Situational Map Symbols Based on User Dynamic Preference Perception
Abstract
:1. Introduction
- Experiment I Measurement of Just Noticeable Difference in Speed
2. Method of Experiment I
2.1. Design
2.2. Participant
2.3. Procedure
2.4. Apparatus and Environment
3. Results of Experiment I
4. Discussion of Experiment I
- Experiment II Evaluating and Selecting the Optimal Speed for Dynamic Symbols in Cognition Task
5. Method of Experiment II
5.1. Design
5.2. Participants
5.3. Procedure
5.4. Apparatus and Environment
6. Results of Experiment II
6.1. Apparent Speed Rate
6.2. Accuracy Rate
6.3. Visual Comfort Score
7. Discussion of Experiment II
8. General Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoekstra, J.M.; van Gent, R.N.H.W.; Ruigrok, R.C.J. Designing for safety: The ‘free flight’ air traffic management concept. Reliab. Eng. Syst. Saf. 2002, 75, 215–232. [Google Scholar] [CrossRef]
- Research on Road Traffic Situation Awareness System Based on Image Big Data|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/8848403 (accessed on 8 April 2024).
- Eräranta, S.; Staffans, A. From Situation Awareness to Smart City Planning and Decision Making. In Proceedings of the 14th International Conference on Computers in Urban Planning and Urban Management, Cambridge, MA, USA, 7–10 July 2015. [Google Scholar]
- Crouser, R.J.; Fukuda, E.; Sridhar, S. Retrospective on a decade of research in visualization for cybersecurity. In Proceedings of the 2017 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 25–26 April 2017; pp. 1–5. [Google Scholar]
- Lu, C.; Lyu, J.; Zhang, L.; Gong, A.; Fan, Y.; Yan, J.; Li, X. Nuclear Power Plants with Artificial Intelligence in Industry 4.0 Era: Top-Level Design and Current Applications—A Systemic Review. IEEE Access 2020, 8, 194315–194332. [Google Scholar] [CrossRef]
- McKee, S.P. A local mechanism for differential velocity detection. Vis. Res. 1981, 21, 491–500. [Google Scholar] [CrossRef] [PubMed]
- de Bruyn, B.; Orban, G.A. Human velocity and direction discrimination measured with random dot patterns. Vis. Res. 1988, 28, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Snowden, R.J.; Braddick, O.J. The temporal integration and resolution of velocity signals. Vis. Res. 1991, 31, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Sudkamp, J.; Bocian, M.; Souto, D. The role of eye movements in perceiving vehicle speed and time-to-arrival at the roadside. Sci. Rep. 2021, 11, 23312. [Google Scholar] [CrossRef] [PubMed]
- Strasburger, H.; Rentschler, I.; Jüttner, M. Peripheral vision and pattern recognition: A review. J. Vis. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Orban, G.A.; De Wolf, J.; Maes, H. Factors influencing velocity coding in the human visual system. Vis. Res. 1984, 24, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Mckee, S.P.; Nakayama, K. The detection of motion in the peripheral visual field. Vis. Res. 1984, 24, 25–32. [Google Scholar] [CrossRef]
- Thompson, P.; Brooks, K.; Hammett, S.T. Speed can go up as well as down at low contrast: Implications for models of motion perception. Vis. Res. 2006, 46, 782–786. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Lingham, G.; Downie, L.E.; Huntjens, B.; Inomata, T.; Jivraj, S.; Kobia-Acquah, E.; Muntz, A.; Mohamed-Noriega, K.; Plainis, S.; et al. TFOS Lifestyle: Impact of the digital environment on the ocular surface. Ocul. Surf. 2023, 28, 213–252. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.W.; Moon, N.J. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays. BMC Ophthalmol. 2014, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Kuze, J.; Ukai, K. Subjective evaluation of visual fatigue caused by motion images. Displays 2008, 29, 159–166. [Google Scholar] [CrossRef]
- Bando, T.; Iijima, A.; Yano, S. Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: A review. Displays 2012, 33, 76–83. [Google Scholar] [CrossRef]
- Jaschinski, W.; Bonacker, M.; Alshuth, E. Accommodation, convergence, pupil diameter and eye blinks at a CRT display flickering near fusion limit. Ergonomics 1996, 39, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer Vision Syndrome: A Review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.E. Evaluation of Methodology for Evaluating Lighting for Offices with VDTs. J. Illum. Eng. Soc. 1987, 16, 39–51. [Google Scholar] [CrossRef]
- Smith, S.P.; Nesbitt, K.; Blackmore, K. Using optical flow as an objective metric of cybersickness in virtual environments. In Proceedings of the Australasian Simulation Congress 2017, Sydney, Australia, 28–31 August 2017. [Google Scholar]
- Terenzi, L.; Zaal, P. Rotational and Translational Velocity and Acceleration Thresholds for the Onset of Cybersickness in Virtual Reality. In AIAA Scitech 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Tong, M.; Chen, S.; Niu, Y.; Wu, J.; Tian, J.; Xue, C. Visual search during dynamic displays: Effects of velocity and motion direction. J. Soc. Inf. Disp. 2022, 30, 635–647. [Google Scholar] [CrossRef]
- Burr, D.; Thompson, P. Motion psychophysics: 1985–2010. Vis. Res. 2011, 51, 1431–1456. [Google Scholar] [CrossRef]
- Finlay, D.; Dodwell, P.C.; Caelli, T. The waggon-wheel effect. Perception 1984, 13, 237–248. [Google Scholar] [CrossRef]
- Davis, S.; Nesbitt, K.; Nalivaiko, E. A Systematic Review of Cybersickness. In Proceedings of the 2014 Conference on Interactive Entertainment, Association for Computing Machinery, New York, NY, USA, 2–3 December 2014; pp. 1–9. [Google Scholar] [CrossRef]
- Gegenfurtner, K.R.; Hawken, M.J. Interaction of motion and color in the visual pathways. Trends Neurosci. 1996, 19, 394–401. [Google Scholar] [CrossRef]
- Fitting the Mel Scale|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/758101 (accessed on 12 July 2023).
- Jacobsen, F.; de Bree, H.-E. A comparison of two different sound intensity measurement principles. J. Acoust. Soc. Am. 2005, 118, 1510–1517. [Google Scholar] [CrossRef]
- Langley, G.B.; Sheppeard, H. The visual analogue scale: Its use in pain measurement. Rheumatol. Int. 1985, 5, 145–148. [Google Scholar] [CrossRef]
- Tong, M.; Chen, S.; Niu, Y.; Xue, C. Effects of speed, motion type, and stimulus size on dynamic visual search: A study of radar human–machine interface. Displays 2023, 77, 102374. [Google Scholar] [CrossRef]
- Yang, L.; Yu, R.; Lin, X.; Liu, N. Shape representation modulating the effect of motion on visual search performance. Sci. Rep. 2017, 7, 14921. [Google Scholar] [CrossRef]
- Ko, Y.-H. The effects of luminance contrast, colour combinations, font, and search time on brand icon legibility. Appl. Ergon. 2017, 65, 33–40. [Google Scholar] [CrossRef]
- Initiative (WAI) WWA. Web Accessibility Initiative (WAI). Cognitive Accessibility at W3C. Available online: https://www.w3.org/WAI/cognitive/ (accessed on 13 November 2023).
- Law Insider [Internet]. ANSI/HFES 100-2007 Standards Definition. Available online: https://www.lawinsider.com/dictionary/ansihfes-100-2007-standards (accessed on 11 November 2023).
- Bond, J.G. Introduction to Game Design, Prototyping, and Development: From Concept to Playable Game with Unity and C#; Addison-Wesley Professional: New York, NY, USA, 2014; 944p. [Google Scholar]
- Farell, B.; Pelli, D.G. Psychophysical methods, or how to measure a threshold, and why. In Vision Research: A Practical Guide to Laboratory Methods; Carpenter, R., Robson, J., Eds.; Oxford University Press: Oxford, UK, 1998. [Google Scholar] [CrossRef]
- Nishida, S. Advancement of motion psychophysics: Review 2001–2010. J. Vis. 2011, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- McKee, S.P.; Smallman, H.S. Size and speed constancy. In Perceptual Constancy: Why Things Look as They Do; Cambridge University Press: New York, NY, USA, 1998; pp. 373–408. [Google Scholar]
- Yong, Z.; Hsieh, P.-J. Speed–size illusion correlates with retinal-level motion statistics. J. Vis. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Burr, D. Motion smear. Nature 1980, 284, 164–165. [Google Scholar] [CrossRef]
- Peschel, A.; Orquin, J. A review of the findings and theories on surface size effects on visual attention. Front. Psychol. 2013, 4, 70924. [Google Scholar] [CrossRef]
- Rajabi-Vardanjani, H.; Habibi, E.; Pourabdian, S.; Dehghan, H.; Maracy, M.R. Designing and Validation a Visual Fatigue Questionnaire for Video Display Terminals Operators. Int. J. Prev. Med. 2014, 5, 841–848. [Google Scholar] [PubMed]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- E-Prime, Version 3.0. Experimental Implementation Software. Psychology Software Tools, Inc.: Pittsburgh, PA, USA, 2016.
- IBM SPSS Statistics for Windows, Version 26.0. Software for Technical Computation. IBM Cor: Yorktown Heights, NY, USA, 2019.
- Hussain, Q.; Alhajyaseen, W.K.M.; Pirdavani, A.; Reinolsmann, N.; Brijs, K.; Brijs, T. Speed perception and actual speed in a driving simulator and real-world: A validation study. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 637–650. [Google Scholar] [CrossRef]
- Yu, R.; Chan, A.H.S. Display Movement Velocity and Dynamic Visual Search Performance: Dynamic Visual Search Performance. Hum. Factors Man. 2015, 25, 269–278. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Nahar, N.K.; Hayes, J.R.; Sheedy, J.E. Asthenopia and Blink Rate Under Visual and Cognitive Loads. Optom. Vis. Sci. 2012, 89, 97. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.T.M.; Tien, L.; Han, A.; Lee, J.M.; Kim, D.; Markoulli, M.; Craig, J.P. Impact of blinking on ocular surface and tear film parameters. Ocul. Surf. 2018, 16, 424–429. [Google Scholar] [CrossRef]
- Hubel, D.H.; Livingstone, M.S. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 1987, 7, 3378–3415. [Google Scholar] [CrossRef]
Large Size | Medium Size | Small Size | |||||||
---|---|---|---|---|---|---|---|---|---|
Speed | JNDS (M) | JNDS (SD) | Weber Fraction | JNDS (M) | JNDS (SD) | Weber Fraction | JNDS (M) | JNDS (SD) | Weber Fraction |
0.25 | 0.04 | 0.02 | 0.171 | 0.04 | 0.03 | 0.176 | 0.05 | 0.02 | 0.203 |
1 | 0.11 | 0.03 | 0.108 | 0.11 | 0.04 | 0.112 | 0.11 | 0.03 | 0.112 |
4 | 0.29 | 0.14 | 0.072 | 0.32 | 0.13 | 0.081 | 0.33 | 0.15 | 0.083 |
8 | 0.56 | 0.14 | 0.070 | 0.54 | 0.12 | 0.067 | 0.55 | 0.12 | 0.069 |
16 | 1.14 | 0.25 | 0.071 | 1.18 | 0.22 | 0.068 | 1.20 | 0.24 | 0.070 |
32 | 2.34 | 0.62 | 0.073 | 2.24 | 0.66 | 0.070 | 2.27 | 0.71 | 0.071 |
48 | 3.74 | 0.90 | 0.078 | 4.03 | 1.02 | 0.084 | 3.89 | 0.95 | 0.081 |
64 | 5.82 | 1.95 | 0.091 | 6.08 | 1.88 | 0.095 | 6.02 | 2.03 | 0.094 |
88 | 9.68 | 3.52 | 0.110 | 10.12 | 3.85 | 0.115 | 10.21 | 3.68 | 0.116 |
128 | 18.69 | 8.96 | 0.146 | 19.20 | 7.69 | 0.150 | 20.35 | 7.84 | 0.159 |
256 | 49.41 | 16.13 | 0.193 | 52.73 | 17.58 | 0.206 | 58.37 | 18.60 | 0.228 |
Apparent Speed Rate | Accuracy Rate | |||
---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
Velocity | ||||
1 | 1.21 | 0.15 | 99.2 | 0.2 |
2 | 1.60 | 0.10 | 99.4 | 0.3 |
4 | 1.95 | 0.11 | 99.2 | 0.3 |
8 | 2.06 | 0.12 | 98.2 | 0.4 |
12 | 2.55 | 0.16 | 97.8 | 0.2 |
16 | 3.06 | 0.17 | 96.8 | 0.5 |
24 | 3.58 | 0.15 | 96.5 | 0.8 |
32 | 4.06 | 0.13 | 95.2 | 0.2 |
48 | 4.32 | 0.16 | 93.3 | 1.4 |
64 | 4.92 | 0.18 | 91.2 | 1.8 |
Speed | Regression Equation | R2 | Adjusted R2 |
---|---|---|---|
1–64 | Y = 0.921 + 0.169x − 0.003x2 + 2.1 × 10−05x3 | 0.826 | 0.784 |
JNDS | Apparent Speed | Accuracy Rate | ||||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Speed | 108.561 | <0.05 | 65.174 | <0.05 | 11.628 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, M.; Chen, S.; Wang, X.; Xue, C. Research on the Movement Speed of Situational Map Symbols Based on User Dynamic Preference Perception. Aerospace 2024, 11, 478. https://doi.org/10.3390/aerospace11060478
Tong M, Chen S, Wang X, Xue C. Research on the Movement Speed of Situational Map Symbols Based on User Dynamic Preference Perception. Aerospace. 2024; 11(6):478. https://doi.org/10.3390/aerospace11060478
Chicago/Turabian StyleTong, Mu, Shanguang Chen, Xinyue Wang, and Chengqi Xue. 2024. "Research on the Movement Speed of Situational Map Symbols Based on User Dynamic Preference Perception" Aerospace 11, no. 6: 478. https://doi.org/10.3390/aerospace11060478
APA StyleTong, M., Chen, S., Wang, X., & Xue, C. (2024). Research on the Movement Speed of Situational Map Symbols Based on User Dynamic Preference Perception. Aerospace, 11(6), 478. https://doi.org/10.3390/aerospace11060478