A Short-Term Traffic Flow Prediction Method for Airport Group Route Waypoints Based on the Spatiotemporal Features of Traffic Flow
Abstract
:1. Introduction
2. Analysis of Spatiotemporal Characteristics of Traffic Flow at Route Waypoints
2.1. Construction of Topological Structure for Airport Group Route Network
2.2. Spatiotemporal Analysis of Traffic Flow at Route Waypoints
2.2.1. Temporal Characteristics of Traffic Flow at Route Waypoints
2.2.2. Spatial Characteristics of Traffic Flow at Route Waypoints
2.3. Selection of Spatiotemporal Feature Indicators
2.3.1. Traffic Flow at Route Waypoints
2.3.2. Network Efficiency Loss Rate
3. Methodology
3.1. Overall Framework of Prediction Process
3.2. Spatial Feature Extraction of Route Waypoint Traffic Based on GCN
3.3. Route Waypoint Traffic Prediction Based on Self-Attention LSTM
3.4. Definition of Loss Function
4. Experimental Analysis and Validation
4.1. Data
4.2. Experimental Setup
4.3. Experiments and Analysis
4.3.1. Comparative Experiments on the Impact of Model Parameters on Prediction Performance
- Comparison experiments for different numbers of GCN layers and dimensions
- 2.
- Comparison experiments for different numbers of LSTM hidden neurons
- 3.
- Comparison experiments for learning rate, training epochs, and batch size
- 4.
- Experiment on input sequence length comparison
4.3.2. Comparative Experiments on the Impact of Input Indicators on Prediction Performance
4.3.3. Comparative Experiments on Prediction Model Performance
5. Conclusions and Further Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Yin, S.W.; Hu, M.H. Network flow dynamics modeling and analysis of arrival traffic in terminal airspace. IEEE Access 2019, 7, 73993–74016. [Google Scholar] [CrossRef]
- Pawelek, A.; Lichota, P. Arriving air traffic separations generalized model identification. Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e140556. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.H.; Liao, Z.H.; Yang, L. A dynamic air traffic model for analyzing relationship patterns of traffic flow parameters in terminal airspace. Aerosp. Sci. Technol. 2016, 55, 10–23. [Google Scholar] [CrossRef]
- Yao, J.F.; He, R.; Shi, T.T.; Wang, P.; Zhao, X.M. Review on machine learning-based traffic flow prediction methods. J. Traffic Transp. Eng. 2023, 23, 44–67. [Google Scholar] [CrossRef]
- An, J.Y.; Fu, L.; Hu, M.; Chen, W.H.; Zhan, J.W. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information. IEEE Access 2019, 7, 20708–20722. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Ke, R.M.; Pu, Z.Y.; Wang, Y.H. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C-Emerg. Technol. 2020, 118, 102674. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.J.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H.F. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Chen, C.; Zheng, J.J.; Sun, D.H. Traffic Flow Prediction Based on STG-CRNN. Control Decis. 2023, 38, 3399–3408. [Google Scholar] [CrossRef]
- Chen, Z.J.; Lu, Z.; Chen, Q.S.; Zhong, H.L.; Zhang, Y.S.; Xue, J.; Wu, C.Z. A spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism. Inf. Sci. 2022, 611, 522–539. [Google Scholar] [CrossRef]
- Zhang, Y.J. Research on Prediction Method of Ride-Hailing Demand Based on Spatio-Temporal Graph Neural Network. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2022. [Google Scholar] [CrossRef]
- Cui, W.Y.; Gu, Y.L.; Zhao, S.L.; Rui, X.P. A method of Predicting Short-term Traffic Flows Based on a DGC-GRU Model. J. Transp. Inf. Saf. 2023, 41, 121–128. [Google Scholar] [CrossRef]
- He, W.W.; Pei, B.Y.; Li, Y.T.; Liu, X.Y.; Xu, S.B. Traffic Flow Forecasting Based on Bi-directional Adaptive Gating Graph Convolutional Networks. J. Transp. Syst. Eng. Inf. Technol. 2023, 23, 187–197. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, J.W.; Liu, H. Deep learning based short-term air traffic flow prediction considering temporal-spatial correlation. Aerosp. Sci. Technol. 2019, 93, 105113. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, R.; Zeng, W.L.; Lu, J.H.; Zhang, Z.J. Short-term prediction of airway congestion index using machine learning methods. Transp. Res. Part C-Emerg. Technol. 2021, 125, 103040. [Google Scholar] [CrossRef]
- Bao, J.; Yang, Z.; Zeng, W.L. Graph to sequence learning with attention mechanism for network-wide multi-step-ahead flight delay prediction. Transp. Res. Part C-Emerg. Technol. 2021, 130, 103323. [Google Scholar] [CrossRef]
- Liu, X.L.; Guo, M.J.; Li, Z. Flight delay prediction based on attention-based adaptive graph convolution-Gated Recurrent Unit. J. Beijing Univ. Aeronaut. Astronaut. 2023, 48, 1–16. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhao, Y.F. A Method for Predicting Air Traffic Flow Based on a Combined GA, RBF, and Improved Cao Method. J. Transp. Inf. Saf. 2023, 41, 115–123. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, H.Y.; Li, F.; Lin, Y. A Deep Learning Approach for Short-Term Airport Traffic Flow Prediction. Aerospace 2021, 9, 11. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, Y.J.; Wang, J.Y.; Luo, C.; Miao, Q. Unmanned Aerial Vehicle Flight Data Anomaly Detection and Recovery Prediction Based on Spatio-Temporal Correlation. IEEE Trans. Reliab. 2021, 71, 457–468. [Google Scholar] [CrossRef]
- Kamo, S.; Rosenow, J.; Fricke, H.; Soler, M. Fundamental Framework to Plan 4D Robust Descent Trajectories for Uncertainties in Weather Prediction. Aerospace 2022, 9, 109. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, Á.; Comendador, F.G.; Valdés, R.A.; Pérez-Castán, J.; Montes, R.B.; Serrano, S.C. Assessment of airport arrival congestion and delay: Prediction and reliability. Transp. Res. Part C Emerg. Technol. 2019, 98, 255–283. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, J.L.; Chen, L.H. Air Traffic Flow Management Delay Prediction Based on Feature Extraction and an Optimization Algorithm. Aerospace 2024, 11, 168. [Google Scholar] [CrossRef]
- Chen, D.; Hu, M.H.; Zhang, H.H.; Yin, J.N.; Han, K. A network based dynamic air traffic flow model for en route airspace system traffic flow optimization. Transp. Res. Part E Logist. Transp. Rev. 2017, 106, 1–19. [Google Scholar] [CrossRef]
- Li, L.; Liang, Y.; Lin, N.; Yan, J.; Meng, H.; Liu, Y.Q. Data cleaning method considering temporal and spatial correlation for measured wind speed of wind turbines. Acta Energiae Solaris Sin. 2023. [CrossRef]
- Tian, W.; Fang, Q.; Zhou, X.F.; Song, J.J. Research on Identification Method of Key Nodes in En-route Network. J. Southwest Jiaotong Univ. 2022, 1–10. Available online: http://kns.cnki.net/kcms/detail/51.1277.U.20221124.0859.002.html (accessed on 25 November 2022).
- Shi, S.H.; Chu, X.W. Speeding up convolutional neural networks by exploiting the sparsity of rectifier units. arXiv 2017, arXiv:1704.07724. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Yin, Y. Hybrid LSTM Neural Network for Short-Term Traffic Flow Prediction. Information 2019, 10, 105. [Google Scholar] [CrossRef]
- Afrin, T.; Yodo, N. A Long Short-Term Memory-based correlated traffic data prediction framework. Knowl.-Based Syst. 2022, 237, 107755. [Google Scholar] [CrossRef]
- Mou, L.T.; Zhao, P.F.; Xie, H.T.; Chen, Y.Y. A Long Short-Term Memory Neural Network Enhanced by Temporal Information for Traffic Flow Prediction. IEEE Access 2019, 7, 98053–98060. [Google Scholar] [CrossRef]
- Ma, C.X.; Dai, G.W.; Zhou, J.B. Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5615–5624. [Google Scholar] [CrossRef]
- Fang, W.W.; Zhuo, W.H.; Song, Y.Y.; Yan, J.W.; Zhuo, T.; Qin, J. Dfree-LSTM: An error distribution free deep learning for short-term traffic flow forecasting. Neurocomputing 2023, 526, 180–190. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Training set ratio | 75% |
Validation set ratio | 5% |
Test set ratio | 20% |
Number of graph convolution layer | 1 |
Dimension of graph convolution layer | 32 |
Number of hidden neurons | 64 |
Training epochs | 300 |
Batch size | 64 |
Learning rate | 0.0006 |
Input sequence length | 12 |
Prediction sequence length | 4 |
The First Convolutional Layer | The Second Convolutional Layer | ||||
---|---|---|---|---|---|
Dimension | MAE | RMSE | Dimension | MAE | RMSE |
16 | 1.7145 | 2.3284 | 8 | 1.7985 | 2.4538 |
16 | 1.7962 | 2.4818 | |||
32 | 1.6111 | 2.1994 | 8 | 1.7772 | 2.4672 |
16 | 1.8943 | 2.5784 | |||
32 | 2.0171 | 2.8346 | |||
64 | 1.6187 | 2.2151 | 8 | 1.8883 | 2.6100 |
16 | 1.8284 | 2.5696 | |||
32 | 1.7989 | 2.4462 | |||
64 | 1.8189 | 2.5872 | |||
128 | 1.6661 | 2.2912 | 8 | 1.8931 | 2.5782 |
16 | 1.8598 | 2.6035 | |||
32 | 1.9479 | 2.7601 | |||
64 | 1.8528 | 2.4914 | |||
128 | 1.8019 | 2.4952 |
Model | MAE | RMSE |
---|---|---|
HA | 1.6928 | 2.3176 |
ARIMA | 1.7556 | 2.1647 |
SVR | 1.5367 | 2.0506 |
LSTM | 1.5306 | 2.0977 |
GCN-LSTM | 1.5386 | 2.0672 |
GC-SALSTM | 1.5074 | 2.0446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Zhang, Y.; Zhang, Y.; Chen, H.; Liu, W. A Short-Term Traffic Flow Prediction Method for Airport Group Route Waypoints Based on the Spatiotemporal Features of Traffic Flow. Aerospace 2024, 11, 248. https://doi.org/10.3390/aerospace11040248
Tian W, Zhang Y, Zhang Y, Chen H, Liu W. A Short-Term Traffic Flow Prediction Method for Airport Group Route Waypoints Based on the Spatiotemporal Features of Traffic Flow. Aerospace. 2024; 11(4):248. https://doi.org/10.3390/aerospace11040248
Chicago/Turabian StyleTian, Wen, Yining Zhang, Ying Zhang, Haiyan Chen, and Weidong Liu. 2024. "A Short-Term Traffic Flow Prediction Method for Airport Group Route Waypoints Based on the Spatiotemporal Features of Traffic Flow" Aerospace 11, no. 4: 248. https://doi.org/10.3390/aerospace11040248
APA StyleTian, W., Zhang, Y., Zhang, Y., Chen, H., & Liu, W. (2024). A Short-Term Traffic Flow Prediction Method for Airport Group Route Waypoints Based on the Spatiotemporal Features of Traffic Flow. Aerospace, 11(4), 248. https://doi.org/10.3390/aerospace11040248