Modelling and Simulation in High-Fidelity Crash Analysis of NGCTR-TD Composite Wing
Abstract
:1. Introduction
- in terms of general approach, as previous experience was based on low fidelity modeling and static analysis (i.e., AW609);
- exploitation of high-fidelity modelling and simulation for viability of certification by analysis.
2. Materials and Methods
2.1. Wing High-Fidelity Model
2.2. Drop Test Configuration
2.3. Characterization of Absorber in Numerical Models
3. Results
3.1. FEA Validation
3.2. Identification of Wing’s Frangible Sections
3.3. Composite Parts Damage Analysis
3.4. Simulation Output Data and Its Implications
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leonardon’s Web Site. Available online: https://www.leonardo.com/it/business/next-generation-civil-tiltrotor-ngctr (accessed on 24 January 2024).
- Sillers, P. T-WING: In Conversation with CIRA. Available online: https://www.cleansky.eu/clean-skys-t-wing-in-conversation-with-cira (accessed on 24 January 2024).
- Perry, D. Analysis: Leonardo Helicopters Advances on Next-Gen Tiltrotor; Flight International: London, UK, 2019; Available online: https://www.FlightGlobal.com (accessed on 24 January 2024).
- Perry, D. Italy Special Report: T-WING Rises to Challeng; Flight International: London, UK, 2018. [Google Scholar]
- Perry, D. Analysis: Italy Combines Capabilities for Future Tiltrotor; Flight International: London, UK, 2008; Available online: https://www.FlightGlobal.com (accessed on 24 January 2024).
- Johnson, J.; Stouffer, V.; Long, D.; Gribko, J. Evaluation of the National Throughput Benefits of the Civil Tiltrotor; NASA/CR–2001-211055; NASA: Washington, DC, USA, 2001. [Google Scholar]
- Smith, D.E.; Wilkerson, J.; Montoro, G.J.; Coy, J.; Zuk, J. Technology Development for Runway Independent Aircraft. In Proceedings of the American Helicopter Society 59th Annual Forum, Phoenix, AZ, USA, 6–8 May 2003. [Google Scholar]
- Johnson, W.; Yamauchi, G.K.; Watts, M.E. NASA Heavy Lift Rotorcraft System Investigation; NASA TP 2005-213467; NASA: Washington, DC, USA, 2005. [Google Scholar]
- Johnson, W.; Yamauchi, G.K.; Watts, M.E. Design and Technology Requirements for Civil Heavy Lift Rotorcraft. In Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference, San Francisco, CA, USA, 18–20 January 2006. [Google Scholar]
- Young, L.; Chung, W.; Paris, A.; Salvano, D.; Young, R.; Gao, H.; Wright, K.; Miller, D.; Cheng, V. A Study of Civil Tiltrotor Aircraft in NextGen Airspace. In Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Ft. Worth, TX, USA, 13–15 September 2010. [Google Scholar]
- Belardo, M.; Marano, A.D.; Beretta, J.; Diodati, G.; Graziano, M.; Capasso, M.; Ariola, P.; Orlando, S.; Di Caprio, F.; Paletta, N.; et al. Wing Structure of the Next-Generation Civil Tiltrotor: From Concept to Preliminary Design. Aerospace 2021, 8, 102. [Google Scholar] [CrossRef]
- Lim, J.; Kim, T.; Shin, S.-J.; Kim, D. Structural Integrity Design of a Composite Wing in a Tiltrotor Aircraft. In Proceedings of the 18th International Conference on Composite Materials, Jeju, Republic of Korea, 21–26 August 2011. [Google Scholar]
- Cronkhite, J.D.; Tanner, A.E. Tilt Rotor Crashworthiness. In Proceedings of the 41st American Helicopter Society (AHS) Forum, Ft. Worth, TX USA, 15–17 May 1985; Available online: https://vtol.org/store/product/tilt-rotor-crashworthiness-1489.cfm (accessed on 24 January 2024).
- Littell, J. NASA Langley Research Center Structural Dynamics Branch. In Proceedings of the NASA/FAA eVTOL Crashworthiness Virtual Meeting, Virtual, 7 April 2020; National Aeronautics and Space Administration: Washington, DC, USA, 2020. [Google Scholar]
- Fasanella, E.L.; Jackson, K.E. Best Practices for Crash Modeling and Simulation; NASA/TM-2002-211944 ARL-TR-2849; U.S. Army Research Laboratory Vehicle Technology Directorate Langley Research Center: Hampton, VA, USA, 2002. [Google Scholar]
- Alam, M.A.; Ya, H.H.; Sapuan, S.M.; Mamat, O.; Parveez, B.; Yusuf, M.; Masood, F.; Ilyas, R.A. Recent Advancements in Advanced Composites for Aerospace Applications: A Review. In Advanced Composites in Aerospace Engineering Applications; Mazlan, N., Sapuan, S., Ilyas, R., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Mrazova, M. Advanced Composite Materials of the Future in Aerospace Industry; INCAS Bulletin: Bucharest, Romania, 2013; Volume 5, pp. 139–150. ISSN 2066–8201. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Z. Credibility Evaluation of Simulation Models. In Proceedings of the 2nd International Conference on Systems Engineering and Modeling (ICSEM 2013), Beijing, China, 21–22 April 2013. [Google Scholar] [CrossRef]
- Ibrahim, A.; Jiang, F. The electric vehicle energy management: An overview of the energy system and related modeling and simulation. Renew. Sustain. Energy Rev. 2014, 144, 111049. [Google Scholar] [CrossRef]
- Caputo, F.; Lamanna, G.; Perfetto, D.; Chiariello, A.; Di Caprio, F.; Di Palma, L. An experimental and numerical crashworthiness study of a full-scale composite fuselage section. AIAA J. 2021, 59, 700–718. [Google Scholar] [CrossRef]
- Dyna, L.S. Keyword User’s Manual, Volume I. LS-DYNA R12-0 07/17/20 (r:13109) LS-DYNA R12; LIVERMORE SOFTWARE TECHNOLOGY (LST): Livermore, CA, USA, 2020. [Google Scholar]
- Quoc, P.M.; Krzikalla, D.; Mesicek, J.; Petru, J.; Smiraus, J.; Sliva, A.; Poruba, Z. On Aluminum Honeycomb Impact Attenuator Designs for Formula Student Competitions. Symmetry 2020, 12, 1647. [Google Scholar] [CrossRef]
- Di Palma, L.; Di Caprio, F.; Chiariello, A.; Ignarra, M.; Russo, S.; Riccio, A.; De Luca, A.; Caputo, F. Vertical drop test of composite fuselage section of a regional aircraft. AIAA J. 2020, 58, 474–487. [Google Scholar] [CrossRef]
Elastic Moduli–CFRP Fabric | |
---|---|
Longitudinal Elastic Modulus-E1 (psi) | 811,000 |
Transversal Elastic Modulus-E2 (psi) | 791,000 |
In Plane Poisson ratio-ν12 (/) | 0.05 |
In Plane Shear Modulus-G12 (psi) | 570,000 |
Allowable–CFRP Fabric | |
Longitudinal Tensile Strength–F1T (psi) | 113,260 |
Longitudinal Compressive Strength-F1C (psi) | 98,100 |
Transversal Tensile Strength–F2T (psi) | 102,070 |
Transversal Compressive Strength–F2C (psi) | 97,700 |
In Plane Shear Strength–S (psi) | 13,233 |
Stiffness Moduli–CFRP UD | |
---|---|
Longitudinal Elastic Modulus-E1 (psi) | 2,170,000 |
Transversal Elastic Modulus-E2 (psi) | 1,230,000 |
In Plane Poisson ratio-ν12 (/) | 0.3 |
In Plane Shear Modulus-G12 (psi) | 660,000 |
Allowable–CFRP UD | |
Longitudinal Tensile Strength–F1T (psi) | 306,000 |
Longitudinal Compressive Strength-F1C (psi) | 194,000 |
Transversal Tensile Strength–F2T (psi) | 6000 |
Transversal Compressive Strength–F2C (psi) | 5100 |
In Plane Shear Strength e–S (psi) | 13,500 |
Mechanical Properties | |
---|---|
Young Modulus (ksi) | 10,400 |
Poisson ratio-ν12 (/) | 0.3 |
Tensile strength-ultimate (psi) | 76,000 |
Yield stress (psi) | 68,000 |
Elongation at failure (%) | 11 |
Stiffness Moduli-HC | Allowable-HC | ||
---|---|---|---|
E1 (psi) | 1 | Tensile 0° (psi) | 0.02166 |
E2 (psi) | 0 | Compressive 0° (psi) | 0.01926 |
ν12 (/) | 0 | Tensile 90° (psi) | 0.01936 |
G1Z (psi) | 6500 | Compressive 90° (psi) | 0.06219 |
G2Z (psi) | 3400 | Shear in plane (psi) | 0.03482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Palma, L.; Nardone, M.; Pezzella, C.; Belardo, M. Modelling and Simulation in High-Fidelity Crash Analysis of NGCTR-TD Composite Wing. Aerospace 2024, 11, 196. https://doi.org/10.3390/aerospace11030196
Di Palma L, Nardone M, Pezzella C, Belardo M. Modelling and Simulation in High-Fidelity Crash Analysis of NGCTR-TD Composite Wing. Aerospace. 2024; 11(3):196. https://doi.org/10.3390/aerospace11030196
Chicago/Turabian StyleDi Palma, Luigi, Mariacristina Nardone, Claudio Pezzella, and Marika Belardo. 2024. "Modelling and Simulation in High-Fidelity Crash Analysis of NGCTR-TD Composite Wing" Aerospace 11, no. 3: 196. https://doi.org/10.3390/aerospace11030196
APA StyleDi Palma, L., Nardone, M., Pezzella, C., & Belardo, M. (2024). Modelling and Simulation in High-Fidelity Crash Analysis of NGCTR-TD Composite Wing. Aerospace, 11(3), 196. https://doi.org/10.3390/aerospace11030196