Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil
Abstract
1. Introduction
2. Experimental Setup
2.1. Experimental Models and Wind Tunnel
2.2. Experimental Technique and Analytical Method
2.2.1. Aerodynamic Force Measurement
2.2.2. Particle Image Velocimetry
2.2.3. Global Luminescent Oil-Film Visualization
3. Results and Discussions
3.1. Aerodynamic Performance
3.2. Flow topologies of Airfoil
3.2.1. Flow Topologies of Pre-Stall
3.2.2. Flow Topologies of Stall Angle
3.2.3. Flow Topologies of Post-Stall
3.3. Discussion on Control Mechanism of WLEs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Original text |
AOA | Angle of Attack |
GLOF | Global Luminescent oil film |
LSB | Laminar separation bubble |
PIV | Particle image velocimetry |
Re | Reynolds number |
WLEs | Wavy Leading-Edges |
References
- Fish, F.E.; Lauder, G.V. Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 2006, 38, 193–224. [Google Scholar] [CrossRef]
- Bolzon, M.D.; Kelso, R.M.; Arjomandi, M. Performance effects of a single tubercle terminating at a swept wing’s tip. Exp. Therm. Fluid Sci. 2017, 85, 52–68. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, T.; Liu, S.H.; Zuo, Z.G.; Zhang, Y.A.; Li, Q.A. Modeling of the compartmentalization effect induced by leading-edge tubercles. Phys. Fluids 2022, 34, 15. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, L.C.; Li, X.J.; Zhao, Y.J.; Liu, Z.X. Dynamic stall of pitching tubercled wings in vortical wake flowfield. Phys. Fluids 2023, 35, 15. [Google Scholar] [CrossRef]
- Troll, M.; Shi, W.C.; Stark, C.; Atlar, M. Vortex dynamics impact on the wake flow of a marine rudder with leading-edge tubercles. J. Ocean Eng. Mar. Energy 2022, 8, 553–571. [Google Scholar] [CrossRef]
- Post, M.L.; Decker, R.; Sapell, A.R.; Hart, J.S. Effect of bio-inspired sinusoidal leading-edges on wings. Aerosp. Sci. Technol. 2018, 81, 128–140. [Google Scholar] [CrossRef]
- Ni, Z.; Dhanak, M.; Su, T.C. Performance Characteristics of Airfoils with Leading-Edge Tubercles and an Internal Slot. AIAA J. 2019, 57, 2394–2407. [Google Scholar] [CrossRef]
- Sudhakar, S.; Karthikeyan, N.; Venkatakrishnan, L. Influence of leading edge tubercles on aerodynamic characteristics of a high aspect-ratio UAV. Aerosp. Sci. Technol. 2017, 69, 281–289. [Google Scholar] [CrossRef]
- Seyhan, M.; Sarioglu, M.; Akansu, Y.E. Influence of Leading-Edge Tubercle with Amplitude Modulation on NACA 0015 Airfoil. AIAA J. 2021, 59, 3965–3978. [Google Scholar] [CrossRef]
- Chen, W.J.; Qiao, W.Y.; Wei, Z.J. Aerodynamic performance and wake development of airfoils with wavy leading edges. Aerosp. Sci. Technol. 2020, 106, 27. [Google Scholar] [CrossRef]
- Kemali, H.; Saydam, A.Z.; Helvacioglu, S. Investigation of the Effect of Leading-Edge Tubercles on Wingsail Performance. J. ETA Marit. Sci. 2020, 8, 54–65. [Google Scholar] [CrossRef]
- Degregori, E.; Kim, J.W. Mitigation of transonic shock buffet on a supercritical airfoil through wavy leading edges. Phys. Fluids 2021, 33, 15. [Google Scholar] [CrossRef]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E.; Fish, F.E. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 2004, 16, L39–L42. [Google Scholar] [CrossRef]
- Smith, T.A.; Klettner, C.A. Airfoil trailing-edge noise and drag reduction at a moderate Reynolds number using wavy geometries. Phys. Fluids 2022, 34, 20. [Google Scholar] [CrossRef]
- Degregori, E.; Kim, J.W. An investigation on a supercritical aerofoil with a wavy leading edge in a transonic flow. Phys. Fluids 2020, 32, 17. [Google Scholar] [CrossRef]
- Bampanis, G.; Roger, M.; Ragni, D.; Avallone, F.; Teruna, C. Airfoil-Turbulence Interaction Noise Source Identification and Reduction by Leading-Edge Serrations. In Proceedings of the AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; p. 18. [Google Scholar]
- Turner, J.M.; Kim, J.W. Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances. J. Fluid Mech. 2017, 811, 582–611. [Google Scholar] [CrossRef]
- Xing, Y.D.; Chen, W.J.; Wang, X.Y.; Tong, F.; Qiao, W.Y. Effect of Wavy Leading Edges on Airfoil Trailing-Edge Bluntness Noise. Aerospace 2023, 10, 17. [Google Scholar] [CrossRef]
- Johari, H.; Henoch, C.; Custodio, D.; Levshin, A. Effects of leading-edge protuberances on airfoil performance. AIAA J. 2007, 45, 2634–2642. [Google Scholar] [CrossRef]
- Hansen, K.L.; Kelso, R.M.; Dally, B.B. Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles. AIAA J. 2011, 49, 185–194. [Google Scholar] [CrossRef]
- Cai, C.; Liu, S.H.; Zuo, Z.G.; Maeda, T.; Kamada, Y.; Li, Q.A.; Sato, R. Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Phys. Fluids 2019, 31, 16. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.G.; Morimoto, M.; Maeda, T.; Kamada, Y.; Liu, S.H. Two-Step Stall Characteristic of an Airfoil with a Single Leading-Edge Protuberance. AIAA J. 2018, 56, 64–77. [Google Scholar] [CrossRef]
- Custodio, D.; Henoch, C.W.; Johari, H. Aerodynamic Characteristics of Finite Span Wings with Leading-Edge Protuberances. AIAA J. 2015, 53, 1878–1893. [Google Scholar] [CrossRef]
- Colak, A.; Seyhan, M.; Sarioglu, M. Leading-edge tubercle modifications to the biomimetic wings. Phys. Fluids 2023, 35, 14. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Hansen, K.L.; Kelso, R.M.; Dally, B.B. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Phys. Fluids 2014, 26, 22. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge. Theor. Comput. Fluid Dyn. 2017, 31, 1–32. [Google Scholar] [CrossRef]
- Hansen, K.L.; Rostamzadeh, N.; Kelso, R.M.; Dally, B.B. Evolution of the streamwise vortices generated between leading edge tubercles. J. Fluid Mech. 2016, 788, 730–766. [Google Scholar] [CrossRef]
- Ferreira, P.H.; Brondani, L.M.; Scarpari, J.R.S.; Correa, F.L.S.; de Paula, A.A.; da Silva, R.G.A. Evaluation of Wavy Leading Edge for Rotary-Wing Applications. In Proceedings of the 2018 Flow Control Conference, Atlanta, Georgia, 25–29 June 2018; p. 20. [Google Scholar]
- Liu, T.S.; Chen, T.; Salazar, D.M.; Miozzi, M. Skin friction and surface optical flow in viscous flows. Phys. Fluids 2022, 34, 14. [Google Scholar] [CrossRef]
- Liu, T.S.; Montefort, J.; Woodiga, S.; Merati, P.; Shen, L.X. Global luminescent oil-film skin-friction meter. AIAA J. 2008, 46, 476–485. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Proc. SPIE Int. Soc. Opt. Eng. (USA) 1981, 281, 319–331. [Google Scholar] [CrossRef]
- Liu, T.; Woodiga, S.; Ma, T. Skin friction topology in a region enclosed by penetrable boundary. Exp. Fluids 2011, 51, 1549–1562. [Google Scholar] [CrossRef]
- Woodiga, S.; Liu, T.S.; Ramasamy, R.S.V.; Kode, S.K. Effects of pitch, yaw, and roll on delta wing skin friction topology. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 639–652. [Google Scholar] [CrossRef]
- Zhong, H.J.; Woodiga, S.; Wang, P.; Shang, J.K.; Cui, X.C.; Wang, J.M.; Liu, T.S. Skin-friction topology of wing body junction flows. Eur. J. Mech. B Fluids 2015, 53, 55–67. [Google Scholar] [CrossRef]
- Liu, T.S. Global skin friction measurements and interpretation. Prog. Aeosp. Sci. 2019, 111, 19. [Google Scholar] [CrossRef]
- Du, H.; Jiang, H.; Chen, S.; Yang, Z.Y.; Zhang, W.X. Fluorescent oil-film applied to measure skin friction of flat plate with leading edge separation bubble in low Reynolds number. Int. J. Mod. Phys. B 2023, 19, 2350272. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B.B.; Hansen, K.L. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Phys. Fluids 2013, 25, 19. [Google Scholar] [CrossRef]
- Pena, B.; Muk-Pavic, E.; Thomas, G.; Fitzsimmons, P. Numerical analysis of a leading edge tubercle hydrofoil in turbulent regime. J. Fluid Mech. 2019, 878, 292–305. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.G.; Maeda, T.; Kamada, Y.; Li, Q.A.; Shimamoto, K.; Liu, S.H. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Phys. Fluids 2017, 29, 14. [Google Scholar] [CrossRef]
- Rodríguez, D.; Theofilis, V. On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 2011, 25, 105–117. [Google Scholar] [CrossRef]
- Schewe, G. Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Zhao, M.; Xu, L.C.; Tang, Z.Q.; Zhang, X.L.; Zhao, B.; Liu, Z.X.; Wei, Z.Y. Onset of dynamic stall of tubercled wings. Phys. Fluids 2021, 33, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Jiang, H.; Yang, Z.; Xia, H.; Chen, S.; Wu, J. Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace 2024, 11, 194. https://doi.org/10.3390/aerospace11030194
Du H, Jiang H, Yang Z, Xia H, Chen S, Wu J. Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace. 2024; 11(3):194. https://doi.org/10.3390/aerospace11030194
Chicago/Turabian StyleDu, Hai, Hao Jiang, Zhangyi Yang, Haoyang Xia, Shuo Chen, and Jifei Wu. 2024. "Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil" Aerospace 11, no. 3: 194. https://doi.org/10.3390/aerospace11030194
APA StyleDu, H., Jiang, H., Yang, Z., Xia, H., Chen, S., & Wu, J. (2024). Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace, 11(3), 194. https://doi.org/10.3390/aerospace11030194