Effect of Nozzle Type on Combustion Characteristics of Ammonium Dinitramide-Based Energetic Propellant
Abstract
:1. Introduction
2. Methods
2.1. Model Establishment
2.2. Parameter Setting
3. Results
3.1. The Evolution of Temperature, Pressure, and Mass Fraction Distribution Clouds of ADN-Based Propellants in Different Types of Nozzles
3.2. Temporal Evolution of ADN-Based Propellant Pressure and Temperature in Various Nozzle Types
3.3. Temporal Evolution of Mass Fraction for ADN-Based Propellant Components
4. Conclusions
- Compared to divergent nozzles and combined nozzles, the ADN-based propellant can generate higher temperatures and pressures within a straight nozzle, which is beneficial for the thruster to achieve greater thrust.
- The combustion of ADN-based propellants is an extremely rapid chemical reaction, with the entire combustion duration being within 10 μs. The mass fractions of reactants ADN and CH3OH in the ADN-based propellant decrease exponentially, while the mass fraction of the product CO2 continuously increases throughout the combustion process.
- Due to the “intermittent contact” between the nozzle wall and shock waves in the divergent and combined nozzles, the ADN-based propellant can produce high-temperature and high-pressure combustion gases more rapidly in the straight nozzle. This accelerates the combustion reaction rate of the reactants and improves the combustion efficiency of the propellant, demonstrating superior combustion characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, D.; Xiang, W. Simplified numerical simulation model for hydroxyl ammonium nitrate-based monopropellant rocket engines. Aerosp. Sci. Technol. 2019, 95, 105474. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Li, H.; Yao, Z. Effect of voltage and droplet size on electrical ignition characteristics of ADN-based liquid propellant droplet. Aerosp. Sci. Technol. 2019, 93, 105314. [Google Scholar] [CrossRef]
- Li, L.; Li, G.X.; Li, H.M.; Yao, Z.P.; Zhang, T. Study on electrical ignition characteristics of ammonium dinitramide (ADN)-based liquid propellant in nitrous oxide environment. Sci. Technol. Energetic Mater. 2023, 84, 72–89. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 3rd ed.; R.T. Edwards, Inc.: Philadelphia, PA, USA, 2012. [Google Scholar]
- Yao, Z.; Zhang, W.; Wang, M.; Chen, J.; Shen, Y.; Wei, Y.; Yu, X.; Li, F.; Zeng, H. Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion. Aerosp. Sci. Technol. 2015, 45, 140–149. [Google Scholar] [CrossRef]
- Nagamachi, M.Y.; Oliveira, J.I.S.; Kawamoto, A.M.; Dutra, R.d.C.L. ADN-The new oxidizer around the corner for an environmentally friendly smokeless propellant. J. Aerosp. Technol. Manag. 2009, 1, 153–160. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Xu, H.; Liu, H.; Zhang, S. Research Progress of ADN-based Liquid Monopropellant Formulation Abroad. Chem. Propellants Polym. Mater. 2018, 16, 19–23. [Google Scholar]
- Cheng, J.; Cao, J.; Li, F.; Zhang, Z.; Xu, J.; Ouyang, K.; Rossi, C.; Ye, Y.; Shen, R. Microwave controlled ignition and combustion characteristics of ADN-based ionic liquid propellant with fast response and environmental friendliness. Chem. Eng. J. 2023, 471, 144412. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Kwon, S. High performance microthruster with ammonium-dinitramide-based monopropellant. Sens. Actuators A Phys. 2018, 283, 211–219. [Google Scholar] [CrossRef]
- Hou, Y.; Yu, Y.; Li, Y.; Liu, X.; Wang, X. Experimental study on microwave-induced puffing, micro-explosion, and combustion characteristics of ammonium dinitramide-based liquid propellant droplets. Phys. Fluids 2023, 35, 117122. [Google Scholar] [CrossRef]
- Li, H.; Li, G.; Li, L.; Yao, Z. Experimental study on thermal ignition and combustion of droplet of ammonium dinitramide based liquid propellant in different oxidizing gas atmospheres. Acta Astronaut. 2020, 169, 40–49. [Google Scholar] [CrossRef]
- Ide, Y.; Takahashi, T.; Iwai, K.; Nozoe, K.; Habu, H.; Tokudome, S. Potential of ADN-based Ionic Liquid Propellant for Spacecraft Propulsion. Procedia Eng. 2015, 99, 332–337. [Google Scholar] [CrossRef]
- Matsunaga, H.; Katoh, K.; Habu, H.; Noda, M.; Miyake, A. Thermal behavior of ammonium dinitramide and amine nitrate mixtures. J. Therm. Anal. Calorim. 2018, 135, 2677–2685. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, W.X.; Fan, X.Z.; Liu, F.L.; Pang, W.Q.; Liu, X.G.; Ji, Y.P. Energetic characteristics and comprehensive properties of propellants containing ADN. Chin. J. Explos. Propellants 2015, 38, 81–85. [Google Scholar]
- Jing, L.; Huo, J.; Wang, H.; You, X.; Zhu, M.; Yang, Y.; Yao, Z. Experimental Investigation on the Evaporation and Combustion Processes of Ammonium-Dinitramide-Based Liquid Propellant. J. Propuls. Power 2017, 33, 343–349. [Google Scholar] [CrossRef]
- Jing, L.; You, X.; Huo, J.; Zhu, M.; Yao, Z. Experimental and numerical studies of ammonium dinitramide based liquid propellant combustion in space thruster. Aerosp. Sci. Technol. 2017, 69, 161–170. [Google Scholar] [CrossRef]
- Itouyama, N.; Habu, H. Analysis of Dispersibility Effect of Carbon Additives on Ignitability of Ammonium-Dinitramide-Based Ionic Liquid Propellants Using Continuous Wave Laser Heating. Combust. Sci. Technol. 2024, 196, 1186–1206. [Google Scholar] [CrossRef]
- Itouyama, N.; Matsunaga, H.; Habu, H. Characterization of Continuous-Wave Laser Heating Ignition of Ammonium Dinitramide-Based Ionic Liquids with Carbon Fibers. Propellants Explos. Pyrotech. 2020, 45, 988–996. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Bolshova, T.A.; Paletsky, A.A. Modeling the chemical reactions of ammonium dinitramide (ADN) in a flame. Combust. Flame 2001, 126, 1516–1523. [Google Scholar] [CrossRef]
- Du, B.; Zheng, Y.; Mao, C.; Cui, H.; Han, J.; Jiang, L.; Ye, J.; Hong, Y. Transmissive Mode Laser Micro-Ablation Performance of Ammonium Dinitramide-Based Liquid Propellant for Laser Micro-Thruster. Micromachines 2023, 14, 1219. [Google Scholar] [CrossRef]
- Dasgupta, A.; Gonzalez-Juez, E.; Haworth, D.C. Flame Simulations with an Open-source Code. Comput. Phys. Commun. 2019, 237, 219–229. [Google Scholar] [CrossRef]
- Jiang, L.; Mao, C.; Han, J.; Cui, H.; Du, B.; Zheng, Y.; Ye, J.; Hong, Y. Effects of Different Initial Conditions on Combustion Process of Ammonium Dinitramide-Based Energetic Propellant in Straight Nozzle. Aerospace 2024, 11, 437. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, M.; Xu, Y.; Li, G.; Zhang, H. Eulerian-Lagrangian Modelling of Detonative Combustion in Two-phase Gas-droplet Mixtures with OpenFOAM: Validations and Verifications. Fuel 2021, 286, 119402. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Tian, B.; Chen, Z. detonationFoam: An open-source solver for simulation of gaseous detonation based on OpenFOAM. Comput. Phys. Commun. 2023, 292, 108859. [Google Scholar] [CrossRef]
- Stull, D.R. JANAF Thermochemical Tables, 2nd ed.; U.S. National Bureau of Standards; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1971. [Google Scholar]
- Sun, J.; Yang, P.; Tian, B.; Chen, Z. Effects of wedge-angle change on the evolution of oblique detonation wave structure. Phys. Fluids 2022, 34, 096112. [Google Scholar] [CrossRef]
- Yao, Z.-P.; Wang, M.; Chen, J. On Thermal Decomposition and Path of Combustion Reaction for ADN-based nontoxic Aerospace propellant. Aerosp. Control Appl. 2013, 5, 53–57. [Google Scholar]
Parameters | a | b | b1 | b2 | θ |
---|---|---|---|---|---|
Value | 0.2 mm | 10 mm | 5 mm | 5 mm | 5° |
1 | NH4N(NO2)2<=>NH3 + N2O+ | 2 | NH3 + HNO3<=>N2O + 2H2O |
3 | N2O + NO<=>NO2 + N2 | 4 | N2O + H<=>N2 + OH |
5 | N2O + O<=>2NO | 6 | NO2 + H<=>NO + OH |
7 | N2O(+M)<=>N2 + O(+M) | 8 | NO + O + M<=>NO2 + M |
9 | O + H2<=>H + OH | 10 | H2 + OH<=>H2O + H |
11 | O + H2O<=>2OH | 12 | H2 + M<=>2H + M |
13 | O + H + M<=>OH + M | 14 | H + OH + M<=>H2O + M |
15 | HCO + M<=>H + CO + M | 16 | HCO + H<=>CO + H2 |
17 | HCO + O<=>CO + OH | 18 | HCO + OH<=>CO + H2O |
19 | 2HCO<=>H2 + 2CO | 20 | H + HCO(+M)<=>CH2O(+M) |
21 | H2 + CO(+M)<=>CH2O(+M) | 22 | CH2O + H<=>HCO + H2 |
23 | CH2O + O<=>HCO + OH | 24 | CH2O + OH<=>HCO + H2O |
25 | CH2OH + M<=>CH2O + H + M | 26 | CH2OH + H<=>CH2O + H2 |
27 | CH2OH + H<=>CH2O + H2 | 28 | CH2OH + O<=>CH2O + OH |
29 | CH2OH + OH<=>CH2O + H2O | 30 | CH2OH + HCO<=>CH3OH + CO |
31 | CH2OH + HCO<=>2CH2O | 32 | 2CH2OH<=>CH3OH + CH2O |
33 | H + CH2OH(+M)<=>CH3OH(+M) | 34 | CH3OH + H<=>CH2OH + H2 |
35 | CH3OH + O<=>CH2OH + OH | 36 | CH3OH + OH<=>CH2OH + H2O |
37 | CH3OH + HCO<=>CH2OH + CH | 38 | CO + O(+M) = CO2(+M) |
39 | CO + OH = CO2 + H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Jiang, L.; Ye, J.; Song, J.; Cui, H.; Du, B.; Feng, G. Effect of Nozzle Type on Combustion Characteristics of Ammonium Dinitramide-Based Energetic Propellant. Aerospace 2024, 11, 935. https://doi.org/10.3390/aerospace11110935
Han J, Jiang L, Ye J, Song J, Cui H, Du B, Feng G. Effect of Nozzle Type on Combustion Characteristics of Ammonium Dinitramide-Based Energetic Propellant. Aerospace. 2024; 11(11):935. https://doi.org/10.3390/aerospace11110935
Chicago/Turabian StyleHan, Jianhui, Luyun Jiang, Jifei Ye, Junling Song, Haichao Cui, Baosheng Du, and Gaoping Feng. 2024. "Effect of Nozzle Type on Combustion Characteristics of Ammonium Dinitramide-Based Energetic Propellant" Aerospace 11, no. 11: 935. https://doi.org/10.3390/aerospace11110935
APA StyleHan, J., Jiang, L., Ye, J., Song, J., Cui, H., Du, B., & Feng, G. (2024). Effect of Nozzle Type on Combustion Characteristics of Ammonium Dinitramide-Based Energetic Propellant. Aerospace, 11(11), 935. https://doi.org/10.3390/aerospace11110935