Integrated Technologies for Anti-Deicing Functions and Structures of Aircraft: Current Status and Development Trends
Abstract
:1. Introduction
1.1. Background
1.2. Aim of the Review
2. Integrated De-Icing and Anti-Icing Heating Layer Structures
2.1. Properties of Heating Layer Structures
2.1.1. Influence on Aerodynamic Profile and Broad Adaptability
2.1.2. Influence of Aircraft Energy Consumption and High De-Icing Efficiency
2.1.3. Influence of Design Approach and Enhanced Heating Performance
2.1.4. Influence of Contact Method
2.1.5. Influence of Material Fatigue Characteristics
2.2. Comparison of Critical Technical Indicators
3. Progress on Heating Layer Structures
4. Key Technologies for Structural Integration of Anti-Deicing Functions
4.1. Integrated Design Technology
4.2. Multi-Physics Coupling Calculation
4.3. Integrated Manufacturing Technology
4.4. Comprehensive Testing and Performance Evaluation
5. Development Directions for Integrated Anti-Icing Functions and Structures
5.1. Emerging Research Hot Points in Anti-Deicing Technology
5.2. New Development Direction of Anti-Deicing
6. Limitations and Main Problems of Heating Layer Structures
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, X.G.; Han, F.H. Aircraft Anti-Icing System; Compilation and Examination Group of Aero Specialized Teaching Materials: Beijing, China, 1985; pp. 1–17. [Google Scholar]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft Icing: An Ongoing Threat to Aviation Safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Farzaneh, M.; Ryerson, C.C. Anti-Icing and Deicing Techniques. Cold Reg. Sci. Technol. 2011, 65, 1–4. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Z.; Su, Y.; Xu, Z. Aircraft Flight Characteristics in Icing Conditions. Prog. Aerosp. Sci. 2015, 74, 62–80. [Google Scholar] [CrossRef]
- Jin, W. Numerical Investigation of Icing Effects on Dynamic Inlet Distortion. Int. J. Aeronaut. Space Sci. 2018, 19, 354–362. [Google Scholar] [CrossRef]
- Zhu, L. Development of General Aviation Aircraft Design Technology Abroad. Aircr. Des. Ref. Mater. 2012, 2, 29–34. [Google Scholar]
- Lynch, F.T.; Khodadoust, A. Effects of Ice Accretions on Aircraft Aerodynamics. Prog. Aerosp. Sci. 2001, 37, 669–767. [Google Scholar] [CrossRef]
- Jung, S.K.; Shin, S.; Myong, R.S.; Cho, T.H. An Efficient CFD-Based Method for Aircraft Icing Simulation Using a Reduced Order Model. J. Mech. Sci. Technol. 2011, 25, 703–711. [Google Scholar] [CrossRef]
- De Rosa, F.; Esposito, A. Electrically heated composite leading edges for aircraft anti-icing applications. Fluid Dyn. Mater. Process. 2012, 8, 107–128. [Google Scholar] [CrossRef]
- He, Q.; Li, K.; Xu, Z.; Wang, J.; Wang, X.; Li, A. Research Progress on Construction Strategy and Technical Evaluation of Aircraft Icing Accretion Protection System. Chin. J. Aeronaut. 2023, 36, 1–23. [Google Scholar] [CrossRef]
- Das, T.K.; Ghosh, P.; Das, N.C. Preparation, Development, Outcomes, and Application Versatility of Carbon Fiber-Based Polymer Composites: A Review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [Google Scholar] [CrossRef]
- Kang, Y.S.; Park, S.W.; Roh, J.S.; Myong, R.S. Computational Investigation of Effects of Expanded Metal Foils on the Lightning Protection Performance of a Composite Rotor Blade. Int. J. Aeronaut. Space Sci. 2021, 22, 203–221. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, Y.; Zhao, Z.Q. Applications and key challenges of polymer composites in civil aero-engines: State-of-art review. Acta Aeronaut. Astronaut. Sin. 2024, 45, 028556. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H. Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines. Chin. J. Aeronaut. 2012, 25, 887–895. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.Y.; Zhang, J.G. Research progress on the structure-function integration on of graphene/carbon fiber hybrid composites. J. Solid Rocket. Technol. 2021, 44, 737–746. [Google Scholar]
- Cao, Y.; Farha, F.I.; Ge, D.; Liu, X.; Liu, W.; Li, G.; Zhang, T.; Xu, F. Highly Effective E-Heating Performance of Nickel Coated Carbon Fiber and Its Composites for deicing Application. Compos. Struct. 2019, 229, 111397. [Google Scholar] [CrossRef]
- Zhou, Y.J. Summary and exploration of aircraft anti-icing and deicing methods. Mod. Trade Ind. 2019, 1, 195–196. (In Chinese) [Google Scholar]
- Wang, Y.; Yuan, X.; Zhang, F. The development of the wing ice protection system. Henan Sci. 2012, 30, 1246–1250. [Google Scholar]
- Al-Khalil, K. Thermo-mechanical expulsion deicing system—TMEDS. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8 January–11 January 2007. [Google Scholar]
- Chen, S.J. Civil Research and Development of Advanced Composite Materials. Mater. Rev. 2010, 11, 22–25. [Google Scholar]
- Falzon, B.G.; Robinson, P.; Frenz, S.; Gilbert, B. Development and Evaluation of a Novel Integrated Anti-Icing/de-Icing Technology for Carbon Fibre Composite Aerostructures Using an Electro-Conductive Textile. Compos. Part A Appl. Sci. Manuf. 2015, 68, 323–335. [Google Scholar] [CrossRef]
- Yao, X.; Hawkins, S.C.; Falzon, B.G. An advanced anti-icing/deicing system utilizing highly aligned carbon nanotube webs. Carbon 2018, 136, 130–138. [Google Scholar] [CrossRef]
- Park, H.K.; Kim, S.M.; Lee, J.S.; Park, J.H.; Hong, Y.K.; Hong, C.H.; Kim, K.K. Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite. Synth. Met. 2015, 203, 127–134. [Google Scholar] [CrossRef]
- Wei, J.; Li, H.; Zhang, Y.; Gu, Z.; Hu, Y.; Jiang, W.; Zhou, J. Research Progress of Graphene Composites in the Field of Electrothermal Anti-Icing /Deicing. Mater. China 2022, 41, 487–496. [Google Scholar]
- Li, W.B.; Hao, Y.Q.; Wang, J.T. Influence of helicopter rotor icing and anti-/deicing methods: A review. J. Aerosp. Power 2023, 38, 258–260. [Google Scholar]
- Yang, C.W.; Hu, H.P.; Ma, Y.L. A new idea on anti-icing and deicing of helicopter rotor blade. Helicopter Tech. 2009, 3, 47–51. [Google Scholar]
- Lin, G.; Bu, X.; Shen, X. Aircraft Icing and Anti-Icing Method; Beihang University: Beijing, China, 2016. [Google Scholar]
- Dehaghani, S.T.; Dolatabadi, A.; McDonald, A. Thermally Sprayed Metal Matrix Composite Coatings as Heating Systems. Appl. Therm. Eng. 2021, 196, 117321. [Google Scholar] [CrossRef]
- Yan, W.; An, Y.; Zhou, Z.; Xiong, H.; Wu, Z. Study on Thermal Energy of Three-Dimensional Propeller Anti-Icing Electrothermal System. In Proceedings of the 2023 17th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, China, 10–12 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Bourgault, Y.; Habashi, W.G.; Dompierre, J.; Baruzzi, G.S. A Finite Element Method Study of Eulerian Droplets Impingement Models. Int. J. Numer. Methods Fluids 1999, 29, 429–449. [Google Scholar] [CrossRef]
- Lian, W.; Xuan, Y. Experimental Investigation on a Novel Aero-Engine Nose Cone Anti-Icing System. Appl. Therm. Eng. 2017, 121, 1011–1021. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Song, D. Numerical Simulation of Melting of Ice Accreted on an Airfoil. Aerosp. Sci. Technol. 2021, 119, 107223. [Google Scholar] [CrossRef]
- Kang, H.; Kaiqiang, W.; Chunyu, G.; Chao, W.; Liyu, Y.; Zeping, W. Mechanism Analysis of Propeller-Ice Contact and Rapid Prediction of Ice Loads. Cold Reg. Sci. Technol. 2023, 216, 103987. [Google Scholar] [CrossRef]
- Yao, X.; Falzon, B.; Hawkins, S.; Tsantzalis, S. Aligned Carbon Nanotube Webs Embedded in a Composite Laminate: A Route towards a Highly Tunable Electro-Thermal System. Carbon 2018, 129, 486–494. [Google Scholar] [CrossRef]
- Zanjani, J.S.; Okan, B.S.; Pappas, P.N.; Galiotis, C.; Menceloglu, Y.Z.; Yildiz, M. Tailoring Viscoelastic Response, Self-Heating and Deicing Properties of Carbon-Fiber Reinforced Epoxy Composites by Graphene Modification. Compos. Part A Appl. Sci. Manuf. 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Baigang, M. A CFD–CSD Coupling Method for Simulating the Dynamic Impact and Expulsion of Fragile Foreign Objects from the “Inlet–Bypass Duct” Junction of a Turboprop Aircraft. Eng. Appl. Comput. Fluid Mech. 2022, 16, 73–94. [Google Scholar] [CrossRef]
- Kim, Y.; Jo, J.; Kim, D.; Lee, H.; Myong, R. Effects of Lightning on UAM Aircraft: Complex Zoning and Direct Effects on Composite Prop-Rotor Blade. Aerosp. Sci. Technol. 2022, 124, 107560. [Google Scholar] [CrossRef]
- Lee, J.S.; Jo, H.; Choe, H.S.; Lee, D.S.; Jeong, H.; Lee, H.R.; Kweon, J.H.; Lee, H.; Myong, R.S.; Nam, Y. Electro-Thermal Heating Element with a Nickel-Plated Carbon Fabric for the Leading Edge of a Wing-Shaped Composite Application. Compos. Struct. 2022, 289, 115510. [Google Scholar] [CrossRef]
- Ji, Z.; Huang, X.; Sheng, H.; Wang, X.; Hu, W.; Liu, H. Neuron-like Thermal Silica Bridge between Boron Nitride Nanosheets with Hard-Soft Composite Structure to Enhance Thermal Conductivity and Anti-Icing Properties on CFRP. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107806. [Google Scholar] [CrossRef]
- Affonso, W.; da Silva, R.G.A.; da Silva, F.S.; Thomas, G.; Kessler, S.; Domingos, R.H. Carbon Nanotube (CNT) Based Ice Protection System Applied to a Small Aircraft. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Thomas, S.K.; Cassoni, R.P.; MacArthur, C.D. Aircraft anti-icing and deicing techniques and modeling. J. Aircr. 1996, 33, 841–854. [Google Scholar] [CrossRef]
- Lopera-Valle, A.; McDonald, A. Flame-Sprayed Coatings as deicing Elements for Fiber-Reinforced Polymer Composite Structures: Modeling and Experimentation. Int. J. Heat Mass Transf. 2016, 97, 56–65. [Google Scholar] [CrossRef]
- Jianzhen, G.U.; Huimin, Q.I.; Jiaxin, Y.U.; Yafeng, Z.H.; Xingshi, G.U. Investigation on Anti/Deicing Performance of an Innovative Electrothermal Structure. Trans. Nanjing Univ. Aeronaut. Astronaut. 2016, 40, 97–104. [Google Scholar]
- Yuan, L.; Linwei, Z.; Zhiqiang, H.; Dejun, W.; Hui, H.; Zhiyong, L. Deicing System of Wind Turbine Blades Based on Polymorphic Intelligent Network. In Proceedings of the International Conference on Ubiquitous Communication (Ucom), Xi’an, China, 7–9 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 432–437. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.W.; Gou, J.H.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Ming, Y.; Duan, Y.; Zhang, S.; Zhu, Y.; Wang, B. Self-Heating 3D Printed Continuous Carbon Fiber/Epoxy Mesh and Its Application in Wind Turbine Deicing. Polym. Test. 2020, 82, 106309. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Y.; Tao, M. Experimental study on electro-thermal deicing of graphene composites. Sci. Technol. Eng. 2019, 19, 390–395. [Google Scholar]
- Zou, L.; Wang, X.; Li, Y. Research progress of flexible electric heating fabrics. Mater. Sci. Technol. 2021, 29, 74–88. [Google Scholar]
- Zhang, C.; Ling, Y.; Zhang, X.; Liang, M.; Zou, H. Ultra-Thin Carbon Fiber Reinforced Carbon Nanotubes Modified Epoxy Composites with Superior Mechanical and Electrical Properties for the Aerospace Field. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107197. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, S.; Cao, X.; Gu, Z.; Wang, C.; He, W. Tensile Mechanical Behavior and Failure Mechanisms of Fiber Metal Laminates under Various Temperature Environments. Compos. Struct. 2022, 284, 115142. [Google Scholar] [CrossRef]
- Süsler, S.; Bora, M.; Uçan, C.; Türkmen, H.S. The Effect of Surface Treatments on the Interlaminar Shear Failure of GLARE Laminates Subjected to Pre-cyclic Thermal Loads. Polym. Compos. 2022, 43, 9040–9053. [Google Scholar] [CrossRef]
- Fan, W.; Dang, W.; Liu, T.; Li, J.; Xue, L.; Yuan, L.; Dong, J. Fatigue Behavior of the 3D Orthogonal Carbon/Glass Fibers Hybrid Composite under Three-Point Bending Load. Mater. Des. 2019, 183, 108112. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, Y.; Wang, Z.; Zhang, Y.; Zhang, K.; Chen, J.; Liu, X.; Chen, H. A Biaxial Stretchable, Flexible Electric Heating Composite Film for deicing. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107124. [Google Scholar] [CrossRef]
- Dai, H.; Li, J.; Sun, Y.; Liu, L.; Chen, L. Electrothermal and interlayer shear properties of warp-knitted biaxial fabric/epoxy electrically heated composite materials. Acta Mater. Compos. Sin. 2020, 37, 1997–2004. [Google Scholar]
- Hong, H.; Liu, W.; Ai, J. Anti-deicing system for helicopters. Helicopter Technol. 2010, 1, 52–56. [Google Scholar]
- Rauch, P.; Quillien, C. Advanced technologies for high performance NH90 blades. Annu. Forum Am. Helicopter Soc. 2003, 59, 554–565. [Google Scholar]
- Yang, C.W.; Zhang, G.H.; Sun, T. Development Black Hwak Helicopter Rotor Blade Anti-/Deicing System. Helicopter Tech. 2011, 1, 37–44. [Google Scholar]
- Wang, L.G.; Zhou, L.; Zhang, S.; Wu, Y.; Li, P.; Chen, J. Research Progress in Anti-icing and Deicing Technology for Helicopter rotors. Acta Aeronaut. Astronaut. Sin. 2023, 44, 729458. [Google Scholar]
- Meng, L.; Chen, P.; Gu, Y. Reliability Experiment and Structural Optimized of Helicopter Rotor Blade Heating Materials Assemble. Fail. Anal. Prev. 2022, 17, 379–384. [Google Scholar]
- Chen, G.C.; Ji, S.Y.; Zhao, W.M.; Yi, X. Experimental study on heating pad of helicopter rotor deicing system. Adv. Aeronaut. Sci. Eng. 2019, 10, 201–205. [Google Scholar]
- Zou, X.L. The design and analysis of helicopter rotor anti-icing/deicing system. Helicopter Tech. 2009, 159, 39–46. [Google Scholar]
- Roy, R.; Raj, L.P.; Jo, J.-H.; Cho, M.-Y.; Kweon, J.-H.; Myong, R.S. Multiphysics Anti-Icing Simulation of a CFRP Composite Wing Structure Embedded with Thin Etched-Foil Electrothermal Heating Films in Glaze Ice Conditions’. Compos. Struct. 2021, 276, 114441. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Q.; Zheng, H.; Dong, W. Integrated Composite Electrothermal Deicing System Based on Ultra-Thin Flexible Heating Film. Appl. Therm. Eng. 2024, 236, 121723. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. An Experimental Investigation on the Unsteady Heat Transfer Process over an Ice Accreting Airfoil Surface. Int. J. Heat Mass Transf. 2018, 122, 707–718. [Google Scholar] [CrossRef]
- Reid, T.; Baruzzi, G.S.; Habashi, W.G. FENSAP-ICE: Unsteady Conjugate Heat Transfer Simulation of Electrothermal Deicing. J. Aircr. 2012, 49, 1101–1109. [Google Scholar] [CrossRef]
- Beaugendre, H.; Morency, F.; Habashi, W.G. ‘FENSAP-ICE’s Three-Dimensional In-Flight Ice Accretion Module: ICE3D’. J. Aircr. 2003, 40, 239–247. [Google Scholar] [CrossRef]
- Bourgault, Y.; Boutanios, Z.; Habashi, W.G. Three-Dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP-ICE, Part 1: Model, Algorithm, and Validation. J. Aircr. 2000, 37, 95–103. [Google Scholar] [CrossRef]
- Esmaeilifar, E.; Raj, L.P.; Myong, R.S. Computational Simulation of Aircraft Electrothermal Deicing Using an Unsteady Formulation of Phase Change and Runback Water in a Unified Framework. Aerosp. Sci. Technol. 2022, 130, 107936. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Yin, J. Numerical Simulation of Three-Dimensional Ice Accretion on an Aircraft Wing. Int. J. Heat Mass Transf. 2016, 92, 34–54. [Google Scholar] [CrossRef]
- Mu, Z.; Lin, G.; Shen, X.; Bu, X.; Zhou, Y. Numerical Simulation of Unsteady Conjugate Heat Transfer of Electrothermal Deicing Process. Int. J. Aerosp. Eng. 2018, 2018, 5362541. [Google Scholar] [CrossRef]
- Verstraete, T.; Scholl, S. Stability Analysis of Partitioned Methods for Predicting Conjugate Heat Transfer. Int. J. Heat Mass Transf. 2016, 101, 852–869. [Google Scholar] [CrossRef]
- Bennani, L.; Trontin, P.; Radenac, E. Numerical Simulation of an Electrothermal Ice Protection System in Anti-Icing and Deicing Mode. Aerospace 2023, 10, 75. [Google Scholar] [CrossRef]
- Jung, S.; Raj, L.P.; Rahimi, A.; Jeong, H.; Myong, R.S. Performance Evaluation of Electrothermal Anti-Icing Systems for a Rotorcraft Engine Air Intake Using a Meta Model. Aerosp. Sci. Technol. 2020, 106, 106174. [Google Scholar] [CrossRef]
- Lei, G.-L.; Dong, W.; Zheng, M.; Guo, Z.-Q.; Liu, Y.-Z. Numerical Investigation on Heat Transfer and Melting Process of Ice with Different Porosities. Int. J. Heat Mass Transf. 2017, 107, 934–944. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Zhang, Z.; Hu, H. Effects of Thermal Conductivity of Airframe Substrate on the Dynamic Ice Accretion Process Pertinent to UAS Inflight Icing Phenomena. Int. J. Heat Mass Transf. 2019, 131, 1184–1195. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Tian, W.; Hu, H. An Experimental Study to Characterize the Effects of Initial Ice Roughness on the Wind-Driven Water Runback over an Airfoil Surface. Int. J. Multiph. Flow 2020, 126, 103254. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Q.; Yang, X.; Liu, Z.; Song, Q. Numerical Investigation of Heat Transfer Performance of Graphene-Doped Anti-/Deicing Component. Therm. Sci. Eng. Prog. 2022, 28, 101098. [Google Scholar] [CrossRef]
- Zanon, A.; De Gennaro, M. Design of the Thermoelectric Ice Protection System for a Tiltrotor Application. J. Aircr. 2022, 59, 1337–1550. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-Icing and deicing Techniques for Wind Turbines: Critical Review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Jała, J.; Nowacki, B.; Mistewicz, K.; Gradoń, P. Graphite-Epoxy Composite Systems for Joule Heating Based deicing. Cold Reg. Sci. Technol. 2023, 216, 104024. [Google Scholar] [CrossRef]
- Ba, H.; Truong-Phuoc, L.; Romero, T.; Sutter, C.; Nhut, J.-M.; Schlatter, G.; Giambastiani, G.; Pham-Huu, C. Lightweight, Few-Layer Graphene Composites with Improved Electro-Thermal Properties as Efficient Heating Devices for deicing Applications. Carbon 2021, 182, 655–668. [Google Scholar] [CrossRef]
- Zhang, D.; Chi, B.; Li, B.; Gao, Z.; Du, Y.; Guo, J.; Wei, J. Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing. Synth. Met. 2016, 217, 79–86. [Google Scholar] [CrossRef]
- Postiglione, G.; Natale, G.; Griffini, G.; Levi, M.; Turri, S. Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites via Liquid Deposition Modeling. Compos. Part A Appl. Sci. Manuf. 2015, 76, 110–114. [Google Scholar] [CrossRef]
- Tsang, Z.-V.; Wang, J.-R.; Lin, K.-Y.; Yu, S.-S. 3D Printable Carbon Nanotubes-Based Composites with Reconfigurable Shapes and Properties. Carbon 2024, 228, 119431. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kempers, R.; Amirfazli, A. 3D printed electro-thermal anti- or deicing system for composite panels. Cold Reg. Sci. Technol. 2019, 166, 102844. [Google Scholar] [CrossRef]
- Cortés, A.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S. 3D Printed Epoxy-CNTs/GNPs Conductive Inks with Application in Anti-Icing and deicing Systems. Eur. Polym. J. 2020, 141, 110090. [Google Scholar] [CrossRef]
- Joshi, A.; Goh, J.K.; Goh, K.E.J. Polymer-Based Conductive Composites for 3D and 4D Printing of Electrical Circuits. In 3D and 4D Printing of Polymer Nanocomposite Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–83. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Pegoretti, A. Fused Deposition Modelling with ABS–Graphene Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016, 85, 181–191. [Google Scholar] [CrossRef]
- Mohan, V.B.; Krebs, B.J.; Bhattacharyya, D. Development of Novel Highly Conductive 3D Printable Hybrid Polymer-Graphene Composites. Mater. Today Commun. 2018, 17, 554–561. [Google Scholar] [CrossRef]
- Li, D.S.; Zhao, C.Q.; Jiang, L.; Jiang, N. Experimental Study on the Bending Properties and Failure Mechanism of 3D Integrated Woven Spacer Composites at Room and Cryogenic Temperature. Compos. Struct. 2014, 111, 56–65. [Google Scholar] [CrossRef]
- Galos, J.; Best, A.; Mouritz, A. Multifunctional Sandwich Composites Containing Embedded Lithium-Ion Polymer Batteries under Bending Loads. Mater. Des. 2020, 185, 108228. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, B.; Chen, M.; Zhou, G. Flexural Properties of Electrothermal Deicing Composite Laminates: Experimental and Numerical Study. Thin-Walled Struct. 2022, 170, 108527. [Google Scholar] [CrossRef]
- Ferro, C.G.; Varetti, S.; Vitti, F.; Maggiore, P.; Lombardi, M.; Biamino, S.; Manfredi, D.; Calignano, F. A Robust Multifunctional Sandwich Panel Design with Trabecular Structures by the Use of Additive Manufacturing Technology for a New Deicing System. Technologies 2017, 5, 35. [Google Scholar] [CrossRef]
- Yu, G.C.; Wu, L.Z.; Feng, L.J.; Yang, W. Thermal and Mechanical Properties of Carbon Fiber Polymer-Matrix Composites with a 3D Thermal Conductive Pathway. Compos. Struct. 2016, 149, 213–219. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Wang, H.; Wu, L.; Sun, Q. Improving the Interlaminar Shear Strength and Thermal Conductivity of Carbon Fiber/Epoxy Laminates by Utilizing the Graphene-coated Carbon Fiber. J. Appl. Polym. Sci. 2019, 136, 47061. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, G.; Cai, D.; Mao, D. Electro-thermal functional fatigue properties of deicing composite laminates: Internal thermal and compression cycle tests. Aerosp. Sci. Technol. 2024, 146, 108978. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Ding, Y.; Zhou, J.; Kong, X.; Harper, L.T.; Blackman, B.R.K.; Falzon, B.G.; Dear, J.P. Modelling Damage in Fibre-Reinforced Thermoplastic Composite Laminates Subjected to Three-Point Bend Loading. Compos. Struct. 2020, 236, 111889. [Google Scholar] [CrossRef]
- Sinmazçelik, T.; Avcu, E.; Bora, M.Ö.; Çoban, O. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods. Mater. Des. 2011, 32, 3671–3685. [Google Scholar] [CrossRef]
- Müller, B.; Hagenbeek, M.; Sinke, J. Thermal Cycling of (Heated) Fibre Metal Laminates. Compos. Struct. 2016, 152, 106–116. [Google Scholar] [CrossRef]
- Hagenbeek, M.; Müller, B.; Sinke, J. Effect of Thermal Cycling and Aging on Heated Fiber Metal Laminates and Glass-Fiber Epoxy Composites. Adv. Eng. Mater. 2019, 21, 1800084. [Google Scholar] [CrossRef]
- Hagenbeek, M.; Sinke, J. Effect of Long-Term Thermal Cycling and Moisture on Heated Fibre Metal Laminates and Glass-Fibre Epoxy Composites. Compos. Struct. 2019, 210, 500–508. [Google Scholar] [CrossRef]
- Da Costa, A.A.; da Silva, D.F.; Travessa, D.N.; Botelho, E.C. The Effect of Thermal Cycles on the Mechanical Properties of Fiber–Metal Laminates. Mater. Des. 2012, 42, 434–440. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, G.; Zhou, F.; Cai, L. Effect of Internal Heating on Delamination Properties of Deicing Composite Curved Beams under Four-Point Bending. Compos. Struct. 2021, 256, 113084. [Google Scholar] [CrossRef]
- Li, R.; Xu, W.; Zhang, D. Impacts of Thermal and Mechanical Cycles on Electro-Thermal Anti-Icing System of CFRP Laminates Embedding Sprayable Metal Film. Materials 2021, 14, 1589. [Google Scholar] [CrossRef]
- Slimane, S.A.; Slimane, A.; Guelailia, A.; Boudjemai, A.; Kebdani, S.; Smahat, A.; Mouloud, D. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding. Mech. Adv. Mater. Struct. 2021, 29, 4487–4505. [Google Scholar] [CrossRef]
- Slimane, S.; Kebdani, S.; Boudjemai, A.; Slimane, A. Effect of position of tension-loaded inserts on honeycomb panels used for space applications. Int. J. Interact. Des. Manuf. 2018, 12, 393–408. [Google Scholar] [CrossRef]
- Ding, L.; Chang, S. Evaluation of Inflight Deicing Performance for Designed Electrothermal Systems with Experimental Verification. J. Aircr. 2020, 57, 156–166. [Google Scholar] [CrossRef]
- Yao, X.; Falzon, B.G.; Hawkins, S.C. Orthotropic Electro-Thermal Behaviour of Highly-Aligned Carbon Nanotube Web Based Composites. Compos. Sci. Technol. 2019, 170, 157–164. [Google Scholar] [CrossRef]
- Kim, M.; Sung, D.H.; Kong, K.; Kim, N.; Kim, B.J.; Park, H.W.; Park, Y.B.; Jung, M.; Lee, S.H.; Kim, S.G. Characterization of Resistive Heating and Thermoelectric Behavior of Discontinuous Carbon Fiber-Epoxy Composites. Compos. Part B Eng. 2016, 90, 37–44. [Google Scholar] [CrossRef]
- Fossati, M.; Habashi, W.G. Multiparameter Analysis of Aero-Icing Problems Using Proper Orthogonal Decomposition and Multidimensional Interpolation. AIAA J. 2013, 51, 946–960. [Google Scholar] [CrossRef]
- Tian, M.; Hao, Y.; Qu, L.; Zhu, S.; Zhang, X.; Chen, S. Enhanced Electrothermal Efficiency of Flexible Graphene Fabric Joule Heaters with the Aid of Graphene Oxide. Mater. Lett. 2019, 234, 101–104. [Google Scholar] [CrossRef]
- Mohseni, M.; Amirfazli, A. A Novel Electro-Thermal Anti-Icing System for Fiber-Reinforced Polymer Composite Airfoils. Cold Reg. Sci. Technol. 2013, 87, 47–58. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Liu, X.; Wang, Z.; Zhu, Y.; Zhou, Y. Novel Sandwich Structural Electric Heating Coating for Anti-Icing/deicing on Complex Surfaces. Surf. Coat. Technol. 2020, 404, 126489. [Google Scholar] [CrossRef]
- Wang, P.; Yao, T.; Li, Z.; Wei, W.; Xie, Q.; Duan, W.; Han, H. A Superhydrophobic/Electrothermal Synergistically Anti-Icing Strategy Based on Graphene Composite. Compos. Sci. Technol. 2020, 198, 108307. [Google Scholar] [CrossRef]
- Laroche, A. Comparative Evaluation of Embedded Heating Elements as Electrothermal Ice Protection Systems for Composite Structures. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2017. [Google Scholar]
- Zheng, B.; Wang, H.; Wu, X.; Yang, K.; Yu, Y.; Cui, H.; Gao, F.; Qian, K.; Yao, H.; Li, J. Flexible Nanocomposite Electrothermal Films Based on Carbon Nanotubes and Waterborne Polyurethane with High Reliability, Stretchability and Low-Temperature Performance for Wind Turbine Blade Deicing. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106979. [Google Scholar] [CrossRef]
- Niu, W.; Chen, G.Y.; Xu, H.; Liu, X.; Sun, J. Highly Transparent and Self-Healable Solar Thermal Anti-/Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Self-Cleaning Coating. Adv. Mater. 2022, 34, 2108232. [Google Scholar] [CrossRef]
- Yang, K.; Wu, Y.; Wang, W.; Chen, W.; Si, C.; Yao, H.; Wang, Z.; Lv, L.; Yang, Z.; Yu, Y. Stretchable, Flexible Fabric Heater Based on Carbon Nanotubes and Water Polyurethane Nanocomposites by Wet Spinning Process. Nanotechnology 2023, 35, 125706. [Google Scholar] [CrossRef]
- Karim, N.; Zhang, M.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K.S. Graphene-based surface heater for deicing applications. RSC Adv. 2018, 8, 16815–16823. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Kim, S.; Park, C.W. Enhancement of Thermal Conductivity of Carbon Fiber-Reinforced Polymer Composite with Copper and Boron Nitride Particles. Compos. Part A Appl. Sci. Manuf. 2019, 121, 449–456. [Google Scholar] [CrossRef]
- Wu, H.; Shi, F.; Zhang, Z.; Zhong, Z.; Wei, X. Effect of Carbon Fiber Bundles Spacing on Composites and Their Electrothermal and Anti/Deicing Properties. Mater. Sci. Eng. B 2024, 299, 117021. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Z.; Liu, Y.; Leng, J. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 2014, 66, 154–163. [Google Scholar] [CrossRef]
- Vertuccio, L.; Foglia, F.; Pantani, R.; Sánchez, R.; Calderón, B.; Guadagno, L. Carbon Nanotubes and Expanded Graphite Based Bulk Nanocomposites for Deicing Applications. Compos. Part B Eng. 2021, 207, 108583. [Google Scholar] [CrossRef]
Serial Number | Structural Method | Anti-Icing Efficiency | Heating Rate (70 °C) | Heating Uniformity (°C) | Power Density | Surface Density |
---|---|---|---|---|---|---|
1 | Adhesive Heating Structure | 70% | 12 s | ±8 °C | 3.0 W/cm2 | 1.8 g/cm3 |
2 | Integration of Function and Structure | 95% | 8 s | ±3 °C | 1.5 W/cm2 | 1.2 g/cm3 |
Panel Number | Heating Capacity [kW/m2] | Stacking Sequence | Description | Overall Thickness [mm] |
---|---|---|---|---|
1 | 15.5 | [0/45/−45] | CFRP Only Heater in 2nd Ply | 0.96 |
2 | 15.5 | [90/0/27/−27] | Aluminum/CFRP Heater in 2nd Ply | 1.06 |
3 | 15.5 | [90/0/27/−27] | Aluminum/CFRP/Cork Heater in 2nd Ply | 2.76 |
4 | 15.5 | [90/0/27/−27] | Aluminum/CFRP/Cork Heaters in 2nd Ply, Gap of 75 mm | 2.76 |
5 | 15.5 | [90/0/27/−27] | Aluminum/Epoxy/CFRP/Epoxy/Cork Heaters under 8th Ply, Gap of 50 mm | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Chen, W.; Dai, N.; Han, C. Integrated Technologies for Anti-Deicing Functions and Structures of Aircraft: Current Status and Development Trends. Aerospace 2024, 11, 821. https://doi.org/10.3390/aerospace11100821
Cui Y, Chen W, Dai N, Han C. Integrated Technologies for Anti-Deicing Functions and Structures of Aircraft: Current Status and Development Trends. Aerospace. 2024; 11(10):821. https://doi.org/10.3390/aerospace11100821
Chicago/Turabian StyleCui, Yanchao, Weijian Chen, Ning Dai, and Chuang Han. 2024. "Integrated Technologies for Anti-Deicing Functions and Structures of Aircraft: Current Status and Development Trends" Aerospace 11, no. 10: 821. https://doi.org/10.3390/aerospace11100821
APA StyleCui, Y., Chen, W., Dai, N., & Han, C. (2024). Integrated Technologies for Anti-Deicing Functions and Structures of Aircraft: Current Status and Development Trends. Aerospace, 11(10), 821. https://doi.org/10.3390/aerospace11100821