Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS
Abstract
:1. Introduction
2. Elliptical Lunar Frozen Orbit (ELFO) Constellation
- (a)
- The vector from the ELFO satellite to the receiver is not intercepted by the Moon (plus a 50 km mask altitude);
- (b)
- The vector from the ELFO satellite to the receiver is inside a 15-degree semi-aperture cone representing the transmitting antenna pattern. The current design of the LCNS platforms is similar to terrestrial GNSS and includes a radiation pattern focused on the nadir direction. Conservatively, the paper follows the same approach.
3. Mission Scenario
4. Cascade Filter Approach
4.1. Moon Inertial State Estimation
- (a)
- Initialization;
- (b)
- Propagation;
- (c)
- Kalman gain computation;
- (d)
- Update.
4.2. Relative Motion
5. A Single-Stage UKF Filter for Formation Flying Lunar Navigation
- (1)
- From the state error covariance matrix, , and the previous estimate, , compute the 2n sigma points (being n the dimension of the state vector):
- (2)
- Propagate the sigma points:
- (3)
- Compute the a priori state estimate by taking the arithmetic mean of the 2n sigma points . The a priori error covariance matrix is also obtained by the sigma points:
- (4)
- Predict the measurements. With a similar procedure to that of Equation (15), 2n sigma points are generated using the propagated state and relevant covariance matrix, . The measurement equation is then used to predict the measurements from the sigma points:
6. Results
6.1. Cold Start
6.2. Performance at Stationary
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, M.; Craig, D.; Herrmann, N.; Mahoney, E.; Krezel, J.; McIntyre, N.; Goodliff, K. The Artemis Program: An Overview of NASA’s Activities to Return Humans to the Moon. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–10. [Google Scholar]
- Nie, T.; Gurfil, P.; Zhang, S. Lunar Satellite Formation Keeping Using Differential Solar Radiation Pressure. J. Guid. Control Dyn. 2020, 43, 754–766. [Google Scholar] [CrossRef]
- Sirbu, G.; Leonardi, M.; Stallo, C.; Di Lauro, C.; Carosi, M. Evaluation of different satellite navigation methods for the Moon in the future exploration age. Acta Astronaut. 2023, 208, 205–218. [Google Scholar] [CrossRef]
- Available online: https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Moonlight (accessed on 24 May 2023).
- Iannone, C.; Carosi, M.; Eleuteri, M.; Stallo, C.; Di Lauro, C.; Musacchio, D. Four satellites to navigate the Moon’s South Pole: An Orbital Study. In Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021. [Google Scholar]
- Giordano, P.; Grenier, A.; Zoccarato, P.; Bucci, L.; Cropp, A.; Swinden, R.; Otero, D.G.; El-Dali, W.; Carey, W.; Duvet, L.; et al. Moonlight navigation service—How to land on peaks of eternal light. In Proceedings of the 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Sabatini, M.; Gasbarri, P.; Palmerini, G.B. GNSS relative navigation for operations in cislunar space. In Proceedings of the Aerospace Europe Conference 2023—10th EUCASS—9th CEAS, Lausanne, Switzerland, 9–13 July 2023. [Google Scholar]
- Sirbu, G.; Leonardi, M.; Carosi, M.; Di Lauro, C.; Stallo, C. Performance evaluation of a lunar navigation system exploiting four satellites in ELFO orbits. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022. [Google Scholar]
- Grenier, A. Positioning and Velocity Performance Levels for a Lunar Lander using a Dedicated Lunar Communication and Navigation System. Navig. J. Inst. Navig. 2022, 69, 2. [Google Scholar] [CrossRef]
- Vallado, D.A. Fundamental of Astrodynamics and Applications. In The Space Technology Library, 4th ed.; Microcosm Press: Cleveland, OH, USA, 1997. [Google Scholar]
- Rodriguez, F.; Martinelli, A.; Spazzacampagna, L.; Albanese, C.; Palmerini, G.B.; Sabatini, M. Analysis of PNT Algorithms and Related Performance for Lunar Navigation Service Users. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023; pp. 3677–3697. [Google Scholar]
- Zarchan, P.; Musoff, H. Fundamental of kalman filtering. Prog. Astronaut. Aeronaut. 2000, 190, 225–259. [Google Scholar]
- Montenbruck, O.; Ramos-Bosch, P. Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solut. 2008, 12, 187–198. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Chen, Q.; Chen, Z.; Zheng, J.; Cheng, H.; Liu, L. A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application. Adv. Space Res. 2018, 62, 343–358. [Google Scholar] [CrossRef]
- Lou, Y.; Dai, X.; Gong, X.; Li, C.; Qing, Y.; Liu, Y.; Peng, Y.; Gu, S. A review of real-time multi-GNSS precise orbit determination based on the filter method. Satell Navig. 2022, 3, 15. [Google Scholar] [CrossRef]
- Clohessy, W.H.; Wiltshire, R.S. Terminal guidance system for satellite rendezvous. J. Aero. Sci. 1960, 27, 653–678. [Google Scholar] [CrossRef]
- Sabatini, M.; Palmerini, G.B. Linearized Formation-Flying Dynamics in a Perturbed Orbital Environment. In Proceedings of the 2008 IEEE Aerospace Conference, Bigsky, MT, USA, 1–8 March 2008. [Google Scholar]
- Gaias, G.; Ardaens, J.S.; Montenbruck, O. Model of J2 perturbed satellite relative motion with time-varying differential drag. Celest. Mech. Dyn. Astr. 2015, 123, 411–433. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H-inf and Nonlinear Approaches. In Wiley Interscience; John Wiley & Sons, Inc., Publication: Hoboken, NJ, USA, 2006. [Google Scholar]
- Reali, F.; Palmerini, G.B. Estimate Problems for Satellite Clusters. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Choi, E.-J.; Yoon, J.-C.; Lee, B.-S.; Park, S.-Y.; Choi, K.-H. Onboard orbit determination using GPS observations based on the unscented Kalman filter. Adv. Space Res. 2010, 46, 1440–1450. [Google Scholar] [CrossRef]
SAT 1 | SAT 2 | SAT 3 | SAT 4 | |
---|---|---|---|---|
a (km) | 9750.7 | 9750.7 | 9750.7 | 9750.7 |
ecc | 0.69 | 0.69 | 0.69 | 0.69 |
Incl (deg) | 55.7 | 55.7 | 55.7 | 55.7 |
Arg (deg) | 90 | 90 | 90 | 90 |
RAAN (deg) | 0 | −120 | 120 | 120 |
f0 (deg) | 0 | 61.7 | 45.5 | 180 |
Semimajor Axis (km) | Eccentricity | Inclination (deg) | Argument of Perilune (deg) | RAAN (deg) | True Anomaly (deg) |
---|---|---|---|---|---|
2125 | 0 | 85 | 0 | −110 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatini, M.; Palmerini, G.B. Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS. Aerospace 2024, 11, 59. https://doi.org/10.3390/aerospace11010059
Sabatini M, Palmerini GB. Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS. Aerospace. 2024; 11(1):59. https://doi.org/10.3390/aerospace11010059
Chicago/Turabian StyleSabatini, Marco, and Giovanni B. Palmerini. 2024. "Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS" Aerospace 11, no. 1: 59. https://doi.org/10.3390/aerospace11010059
APA StyleSabatini, M., & Palmerini, G. B. (2024). Filtering Strategies for Relative Navigation in Lunar Scenarios Using LCNS. Aerospace, 11(1), 59. https://doi.org/10.3390/aerospace11010059