Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment
Abstract
:1. Introduction
- (1)
- Our proposed control strategy is built upon the TDE framework, enhanced by GFOFTSMC to address estimation errors, and incorporates an ANN rooted in the cubic B-spline function for precise switching gain approximation. By sidestepping traditional mathematical models, this strategy offers both robustness and streamlined control performance.
- (2)
- IPID serves as the principal controller, significantly streamlining the parameter tuning process.
- (3)
- The sliding mode surface, formulated using GTSMS, fast term and FO, boasts features, such as the elimination of arrival time, expedited convergence in the sliding phase, assurance of finite-time arrival, singularity prevention and heightened robustness.
- (4)
- The system’s stability and finite-time calculations are underscored by the Lyapunov stability theorem and finite-time stability theorem, respectively.
2. Mathematical Model and Preliminaries
2.1. Mathematical Model
2.2. Preliminaries
3. Control Strategy Development
3.1. Model-Free Control
3.2. TED-MFIPIDC Strategy
3.3. TDE-GFOFTSMC-MFIPIDC Strategy
3.4. TDE-ANNGFOFTSMC-MFIPIDC Strategy
3.5. Stability Analysis
4. Simulation Demonstrations
4.1. Target Temperature Cruve Acquisition
4.2. Comparative Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Fan, P.; Fan, Y.; Xu, B.; Yan, J. Robust adaptive control of hypersonic vehicle considering inlet unstart. J. Syst. Eng. Electron. 2022, 33, 188–196. [Google Scholar] [CrossRef]
- Niu, J.; Sui, Y.; Yu, Q.; Cao, X.; Yuan, Y.; Yang, X. Comparative numerical study of aerodynamic heating and performance of transonic hyperloop pods with different noses. Case Stud. Therm. Eng. 2022, 29, 101701. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, C.; Fang, R.; Wu, Z.; Li, H.; Kong, F. Modal Characteristics of Carbon Fiber Reinforced Composite Structure at High Temperature. J. Spacecr. Rocket. 2021, 58, 182–189. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Z.; Gong, S. Adaptive control of hypersonic vehicles with unknown dynamics based on dual network architecture. Acta Astronaut. 2022, 193, 197–208. [Google Scholar] [CrossRef]
- Dalboni, M.; Tavernini, D.; Montanaro, U.; Soldati, A.; Concari, C.; Dhaens, M.; Sorniotti, A. Nonlinear Model Predictive Control for Integrated Energy-Efficient Torque-Vectoring and Anti-Roll Moment Distribution. Ieee Asme Trans. Mechatron. 2021, 26, 1212–1224. [Google Scholar] [CrossRef]
- Favato, A.; Carlet, P.G.; Toso, F.; Torchio, R.; Bolognani, S. Integral Model Predictive Current Control for Synchronous Motor Drives. Ieee Trans. Power Electron. 2021, 36, 13293–13303. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S. Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. Isa Trans. 2018, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef]
- Fliess, M.; Join, C. An alternative to proportional-integral and proportional-integral-derivative regulators: Intelligent proportional-derivative regulators. Int. J. Robust Nonlinear Control. 2022, 32, 9512–9524. [Google Scholar] [CrossRef]
- Chand, A.N.; Kawanishi, M.; Narikiyo, T. Non-linear model-free control of flapping wing flying robot using iPID. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar]
- Saleki, A.; Fateh, M.M. Model-free control of electrically driven robot manipulators using an extended state observer. Comput. Electr. Eng. 2020, 87, 106768. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Li, J.; Wang, K.; Wang, F.; Cui, G. Model-Free Adaptive Control of pH Value of Wet Desulfurization Slurry under Switching of Multiple Working Conditions. Complexity 2020, 2020, 4727412. [Google Scholar] [CrossRef]
- Tran, M.-T.; Lee, D.-H.; Chakir, S.; Kim, Y.-B. A Novel Adaptive Super-Twisting Sliding Mode Control Scheme with Time-Delay Estimation for a Single Ducted-Fan Unmanned Aerial Vehicle. Actuators 2021, 10, 54. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Li, G.; Wang, Q.; Wen, Y. Time Delay Estimation Control of Permanent Magnet Spherical Actuator Based on Gradient Compensation. Electronics 2022, 11, 66. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181. [Google Scholar] [CrossRef]
- Kali, Y.; Rodas, J.; Gregor, R.; Saad, M.; Benjelloun, K. Attitude tracking of a tri-rotor UAV based on robust sliding mode with time delay estimation. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 346–351. [Google Scholar]
- Li, Z.; Wang, P.; Zhang, J.; Guan, H. A model-free method for identifying time-delay characteristics of HVAC system based on multivariate transfer entropy. Build. Environ. 2022, 217, 109072. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J. Model-free Attitude Decoupling Control of Space Robots Based on Time-delay Estimation. J. Astronaut. 2021, 42, 1150–1161. [Google Scholar]
- Pukdeboon, C. Output Feedback Second Order Sliding Mode Control for Spacecraft Attitude and Translation Motion. Int. J. Control Autom. Syst. 2016, 14, 411–424. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Y.; Xu, X. Fractional Order Adaptive Fast Super-Twisting Sliding Mode Control for Steer-by-Wire Vehicles with Time-Delay Estimation. Electronics 2021, 10, 2424. [Google Scholar] [CrossRef]
- Wang, J.; Bi, C.; Wang, D.; Kuang, Q.; Wang, C. Finite-time distributed event-triggered formation control for quadrotor UAVs with experimentation. ISA Trans. 2022, 126, 585–596. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Xie, D.; Yue, M.; Weng, K.; Gao, W.; Liu, N. New Terminal Sliding Mode Consensus Algorithm for Disturbed Second-order Multi-agent Systems. Int. J. Control Autom. Syst. 2022, 20, 2534–2542. [Google Scholar] [CrossRef]
- Tong, X.; Zhao, H.; Feng, G. Adaptive global terminal sliding mode control for anti-warship missiles. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; pp. 1962–1966. [Google Scholar]
- Cao, P.; Fan, H.; Cai, Z. Adaptive fractional-order PID control for VSC-HVDC systems via cooperative beetle antennae search with offshore wind integration. Energy Eng. 2021, 118, 265–284. [Google Scholar] [CrossRef]
- Roy, P.; Roy, B.K. Sliding mode control versus fractional-order sliding mode control: Applied to a magnetic levitation system. J. Control Autom. Electr. Syst. 2020, 31, 597–606. [Google Scholar] [CrossRef]
- Xiong, T.; Pu, Z.; Yi, J.; Tao, X. Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach. IET Control. Theory Appl. 2020, 14, 1147–1157. [Google Scholar] [CrossRef]
- Li, Y.; Sai, H.; Zhu, M.; Xu, Z.; Mu, D. Neural network-based continuous finite-time tracking control for uncertain robotic systems with actuator saturation. Asian J. Control 2022, 24, 3475–3493. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, G.; Zhu, M.; Shi, Z.; Bai, Z.; Alexandrov, I.V. Aerodynamic Heating Ground Simulation of Hypersonic Vehicles Based on Model-Free Control Using Super Twisting Nonlinear Fractional Order Sliding Mode. Mathematics 2022, 10, 1664. [Google Scholar] [CrossRef]
- Xia, L.S.; Bin, Q.I.; Tian, N.; Cao, Y.Q.; Hong-Liang, L.I. Study on Modeling Analysis and Testing Method of Electro-thermal Properties of Quartz Lamp. Infrared Technol. 2015, 37, 877. (In Chinese) [Google Scholar]
- Lv, X.; Zhang, G.; Zhu, M.; Ouyang, H.; Shi, Z.; Bai, Z.; Alexandrov, I.V. Adaptive Neural Network Global Nonsingular Fast Terminal Sliding Mode Control for a Real Time Ground Simulation of Aerodynamic Heating Produced by Hypersonic Vehicles. Energies 2022, 15, 3284. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, G.M.; Ouyang, H.M.; Mei, L. An Adaptive Super Twisting Nonlinear Fractional Order PID Sliding Mode Control of Permanent Magnet Synchronous Motor Speed Regulation System Based on Extended State Observer. Ieee Access 2020, 8, 53498–53510. [Google Scholar] [CrossRef]
- Wu, G.Q.; Wu, S.N.; Wu, Z.G. Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics. Math. Probl. Eng. 2013, 2013, 7070485. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, L.; Gao, M.; Zhu, K. Multivariable Output Feedback Adaptive Terminal Sliding Mode Control for Underwater Vehicles. Asian J. Control 2016, 18, 247–265. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, H.P.; Tian, Y. Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. J. Vib. Control 2018, 24, 5273–5290. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, J.W.; Yan, F.; Zhu, K.W.; Chen, B. Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. Isa Trans. 2019, 86, 163–180. [Google Scholar] [CrossRef]
- Li, S.Z.; Wang, H.P.; Tian, Y.; Aitouch, A.; Klein, J. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control. Isa Trans. 2016, 64, 431–439. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, H.P.; Tian, Y.; Peyrodie, L.; Wang, X.K. Model-free based neural network control with time-delay estimation for lower extremity exoskeleton. Neurocomputing 2018, 272, 178–188. [Google Scholar] [CrossRef]
- Wang, H.P.; Ye, X.F.; Tian, Y.; Zheng, G.; Christov, N. Model-Free-Based Terminal SMC of Quadrotor Attitude and Position. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2519–2528. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liang, J.C.; Wu, Y.N.; Miao, Z.Q.; Zhang, H.; Wang, Y.N. Adaptive Sliding-Mode Disturbance Observer-Based Finite-Time Control for Unmanned Aerial Manipulator With Prescribed Performance. IEEE T. Cybern. 2023, 53, 3263–3276. [Google Scholar] [CrossRef]
- He, H.; Gao, X.; Qi, W. Asynchronous H-infinity control of time-delayed switched systems with actuator saturation via anti-windup design. Optim. Control Appl. Methods 2018, 39, 1–18. [Google Scholar] [CrossRef]
- Event-triggered Control of Positive Switched Systems with Actuator Saturation and Time-delay. Int. J. Autom. Comput. 2021, 18, 141–154. [CrossRef]
- Sobhanipour, H.; Rezaie, B. Enhanced Exponential Stability Analysis for Switched Linear Time-Varying Delay Systems Under Admissible Edge-Dependent Average Dwell-Time Strategy. Ieee Trans. Syst. Man Cybern. Syst. 2023, 53, 5331–5342. [Google Scholar] [CrossRef]
- Wang, P.; Sang, H.; Ma, D. Dissipativity for Discrete-Time Switched Positive Delay Systems: A Dwell-Time-Dependent Linear Copositive Storage Functional Method. Ieee Trans. Syst. Man Cybern. Syst. 2023, 53, 4028–4038. [Google Scholar] [CrossRef]
- Park, B.; Olama, M.M. A Model-Free Voltage Control Approach to Mitigate Motor Stalling and FIDVR for Smart Grids. Ieee Trans. Smart Grid 2021, 12, 67–78. [Google Scholar] [CrossRef]
- Li, W.; Yuan, H.; Li, S.; Zhu, J. A Revisit to Model-Free Control. Ieee Trans. Power Electron. 2022, 37, 14408–14421. [Google Scholar] [CrossRef]
Symbol (Unit) | Descriptions |
---|---|
() | Electric heat energy obtained by quartz lamp |
() | Electric power controlled by power adjusting device |
() | Current temperature of quartz lamp |
() | Initial temperature of quartz lamp |
() | Specific heat capacity |
() | Mass of quartz lamp filament |
() | Surface of quartz lamp filament |
() | Convectional heat transfer coefficient |
() | Radiate heat transfer coefficient |
Blackness coefficient | |
() | Boltzmann’s constant |
Angle factor | |
(rad) | Thyristor conduction angle |
(V) | Voltage of source |
() | Resistance of quartz lamp filament |
(s) | Heating time |
Parameters | ||||||
---|---|---|---|---|---|---|
Value | 2000 | 0.01 | 50 | 0.02 | 1.2 | 0.5 |
Parameters | ||||||
Value | ||||||
Parameters | ||||||
Value | 0.0007 | 4 | 3 | 0.6 |
Parameters | ||||||
---|---|---|---|---|---|---|
Value | 2000 | 0.01 | 5000 | 0.00005 | 4 | 3 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Value | 0.1 | 0.2 | 0.05 | 2000 | 0.01 | 20,000 | 80,000 | 0.7 |
Control Strategies | without Disturbances | with Disturbances | ||
---|---|---|---|---|
MSE | MAE | MSE | MAE | |
TDE-ANNGFOFTSMC-MFIPIDC | 0.0003585 | 0.0812 | 0.0004002 | 0.0919 |
TDE-GTSMC-MFIPIDC | 0.000695 | 0.6031 | 0.00087681 | 0.3852 |
TDE-MFIPIDC | 0.0042 | 0.8904 | 0.0043 | 0.9048 |
PID | 0.0046 | 1.2740 | 0.0047 | 1.2992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Zhang, G.; Bai, Z.; Zhou, X.; Shi, Z.; Zhu, M. Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment. Aerospace 2023, 10, 777. https://doi.org/10.3390/aerospace10090777
Lv X, Zhang G, Bai Z, Zhou X, Shi Z, Zhu M. Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment. Aerospace. 2023; 10(9):777. https://doi.org/10.3390/aerospace10090777
Chicago/Turabian StyleLv, Xiaodong, Guangming Zhang, Zhiqing Bai, Xiaoxiong Zhou, Zhihan Shi, and Mingxiang Zhu. 2023. "Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment" Aerospace 10, no. 9: 777. https://doi.org/10.3390/aerospace10090777
APA StyleLv, X., Zhang, G., Bai, Z., Zhou, X., Shi, Z., & Zhu, M. (2023). Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment. Aerospace, 10(9), 777. https://doi.org/10.3390/aerospace10090777