Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion
Abstract
:1. Introduction
2. Theoretical Background
2.1. Turbulence
2.2. Turbulent Diffusion Flames
2.3. Flame Classification
2.3.1. Fuel-Rich vs. Lean
2.3.2. Flame Index
3. Numerical Simulation Case Setup
4. Results Analysis
4.1. Simulation
4.2. Simulation
4.3. Comparison
4.3.1. Near Injection Mixing
4.3.2. Downstream Mixing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haeseler, D.; Bombelli, V.; Vuillermoz, P.; Lo, R.; Marée, T.; Caramelli, F. Green Propellant Propulsion Concepts for Space Transportation and Technology Development Needs. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion, Sardinia, Italy, 7–8 June 2004. [Google Scholar]
- Sackheim, R.L.; Masse, R.K. Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine. J. Propuls. Power 2014, 30, 265–276. [Google Scholar] [CrossRef]
- Turner, M.J.L. Liquid Propellant Rocket Engines. In Rocket and Spacecraft Propulsion; Springer: Berlin/Heidelberg, Germany, 2009; pp. 67–108. [Google Scholar]
- Nickerson, G.R.; Johnson, C.W. A Soot Prediction Model for the TDK Computer Program. In Proceedings of the AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit, Nashville, TN, USA, 6–8 July 1992. [Google Scholar]
- Ciezki, H.K.; Zhukov, V.; Werling, L.; Kirchberger, C.; Naumann, C.; Friess, M.; Riedel, U. Advanced Propellants for Space Propulsion—A Task within the DLR Interdisciplinary Project “Future Fuels”. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Kajon, D.; Liuzzi, D.; Boffa, D.; Rudnykh, M.; Drigo, D.; Arione, L.; Ierardo, N.; Sirbi, A. Oxygen-methane combustion studies in the In Space Propulsion Programme. In Proceedings of the 4th European Conference for Aerospace Sciences (EUCASS), Madrid, Spain, July 2019. [Google Scholar]
- Ciezki, H.N.M.; Werling, L. Trends in Research and Development on Green Chemical Propulsion for Orbital Systems. In Proceedings of the 7th International Conference on Recent Advances in Space Technologies, RAST 2015, Istanbul, Turkey, 16–19 June 2015. [Google Scholar]
- Werling, L.; Freudenmann, D.; Ricker, S.C.; Wilhelm, M.; Lauck, F.; Strauss, F.; Manassis, K.; Kurilov, M.; Petrarolo, A.; Hörger, T.; et al. Research and Test Activities on Advanced Rocket Propellants at DLR’s Institute of Space Propulsion in Lampoldshausen. In Proceedings of the 9th European Conference for Aeronautics and Space Sciences, Lille, France, 27 June–1 July 2022. [Google Scholar]
- Haidn, O.; Ordonneau, G.; Soller, S.; Onofri, M. Development of the liquid oxygen and methane M10 rocket engine for the Vega-E upper stage. In Proceedings of the 8th European Conference for Aerospace Sciences, Saint Petersburg, Russia, 4–8 July 2011. [Google Scholar]
- Haidn, O.J.; Celano, M.P.; Luo, M.; Roth, C.; Silvestri, S.; Slavinskaya, N.A. On Methane/ Oxygen Combustion for Rocket Applications. In Proceedings of the International Symposium on Innovation and Prospects of Liquid Propulsion, Xi’an, China, 4–6 September 2016. [Google Scholar]
- Friedrich, R. Modelling of Turbulence in Compressible Flows. In Transition, Turbulence and Combustion Modelling: Lecture Notes from the 2nd ERCOFTAC Summerschool held in Stockholm, 10–16 June 1998; Springer: Dordrecht, The Netherlands, 1999; pp. 243–348. [Google Scholar] [CrossRef]
- Echekki, T.; Mastorakos, E. Concepts, Governing Equations and Modelling Strategies. In Turbulent Combustion; Springer: Dordrecht, The Netherlands, 2011; pp. 19–39. [Google Scholar]
- Chakraborty, N.; Katragadda, M.; Cant, R.S. Statistics and Modelling of Turbulent Kinetic Energy Transport in Different Regimes of Premixed Combustion. Flow Turbul. Combust. 2010, 87, 205–235. [Google Scholar] [CrossRef]
- Chakraborty, N. Influence of Thermal Expansion on Fluid Dynamics of Turbulent Premixed Combustion and Its Modelling Implications. Flow Turbul. Combust. 2021, 106, 753–848. [Google Scholar] [CrossRef]
- Cuenot, B.; Poinsot, T. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1994; Volume 25, pp. 1383–1390. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D. A Flame Control Method for Direct Numerical Simulations of Reacting Flows in Rocket Engines. Master’s Thesis, Institute of Space Propulsion, Technical University of Munich, Munich, Germany, 2021. [Google Scholar]
- Martinez-Sanchis, D.; Banik, S.; Sternin, A.; Sternin, D.; Haidn, O.; Tajmar, M. Analysis of turbulence generation and dissipation in shear layers of methane–oxygen diffusion flames using direct numerical simulations. Phys. Fluids 2022, 34, 045121. [Google Scholar] [CrossRef]
- Martínez-Sanchis, D.; Sternin, A.; Tagscherer, K.; Sternin, D.; Haidn, O.; Tajmar, M. Interactions Between Flame Topology and Turbulent Transport in High-Pressure Premixed Combustion. Flow Turbul. Combust. 2022, 109, 813–838. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Shvab, J.; Haidn, O.; Hu, X. An Eddy Dissipation Concept Performance Study for Space Propulsion Applications. Aerospace 2022, 9, 476. [Google Scholar] [CrossRef]
- Ruelle, D. Strange attractors as a mathematical explanation of turbulence. In Statistical Models and Turbulence: Proceedings of a Symposium Held at the University of California, San Diego (La Jolla) 15–21 July 1971; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Ruelle, D.; Takens, F. On the nature of turbulence. Commun. Math. Phys. 1971, 20, 167–192. [Google Scholar] [CrossRef]
- Favre, A. Problems of Hydrodynamics and Continuum Mechanics; SIAM: Philadelphia, PA, USA, 1969. [Google Scholar]
- Magnussen, B.F. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. In Proceedings of the Nineteenth AIAA Meeting, St. Louis, MO, USA, 12–15 January 1981. [Google Scholar] [CrossRef]
- Magnussen, B.F. The Eddy Dissipation Concept—A Bridge Between Between Science and Technology. In Proceedings of the ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal, 21–24 June 2005. [Google Scholar]
- Peters, N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 1984, 10, 319–339. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent Combustion Modeling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Nivarti, G. The Bending Effect in Turbulent Flame Propagation. Doctoral Dissertation, University of Cambridge, Cambridge, UK, 2017. [Google Scholar]
- Damköhler, G. Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. Angew. Phys. Chem. 1940, 46, 601–652. [Google Scholar]
- Nivarti, G.; Cant, S. Direct Numerical Simulation of the bending effect in turbulent premixed flames. Proc. Combust. Inst. 2017, 36, 1903–1910. [Google Scholar] [CrossRef]
- Nivarti, G.V.; Cant, S. Scalar transport and the validity of Damköhler’s hypotheses for flame propagation in intense turbulence. Phys. Fluids 2017, 29, 085107. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D. How fast can we burn? In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1992; Volume 24, pp. 247–262. [Google Scholar] [CrossRef]
- Driscoll, J.F. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 2008, 34, 91–134. [Google Scholar] [CrossRef]
- Bilger, R.W. The Structure of Diffusion Flames. Combust. Sci. Technol. 1976, 13, 155–170. [Google Scholar] [CrossRef]
- Bray, K.; Domingo, P.; Vervisch, L. Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 2005, 141, 431–437. [Google Scholar] [CrossRef]
- Pierce, C.D.; Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 2004, 504, 73–97. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Haidn, O.; Tajmar, M. Turbulent combustion statistics in a diffusion flame for space propulsion applications. Phys. Fluids 2022, 34, 125115. [Google Scholar] [CrossRef]
- Burke, S.P.; Schumann, T.E.W. Diffusion Flames. Ind. Eng. Chem. 1928, 20, 998–1005. [Google Scholar] [CrossRef]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Poinsot, T.; Veynante, D. Turbulent non premixed flames. In Theoretical and Numerical Combustion; Aquaprint: Bordeaux, France, 2012; pp. 287–348. [Google Scholar]
- Goodwin, D.; Moffat, H.; Speth, R. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics and Transport Processes Version 2.3.0b. 2017. Available online: https://zenodo.org/record/48735 (accessed on 1 January 2023).
- Salavinskaya, N.A.; Haidn, O.J. Reduced Chemical Model for High Pressure Methane Combustion with PAH Formation. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Yamashita, H.; Shimada, M.; Takeno, T. A numerical study on flame stability at the transition point of jet diffusion flames. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1996; Volume 26, pp. 27–34. [Google Scholar] [CrossRef]
- Fiorina, B.; Gicquel, O.; Vervisch, L.; Carpentier, S.; Darabiha, N. Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 2005, 140, 147–160. [Google Scholar] [CrossRef]
- Nguyen, P.-D.; Vervisch, L.; Subramanian, V.; Domingo, P. Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 2010, 157, 43–61. [Google Scholar] [CrossRef]
- Som, S.; Aggarwal, S. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust. Flame 2010, 157, 1179–1193. [Google Scholar] [CrossRef]
- Wu, H.; Ihme, M. Compliance of combustion models for turbulent reacting flow simulations. Fuel 2016, 186, 853–863. [Google Scholar] [CrossRef]
- Wan, K.; Vervisch, L.; Xia, J.; Domingo, P.; Wang, Z.; Liu, Y.; Cen, K. Alkali metal emissions in an early-stage pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation. Proc. Combust. Inst. 2018, 37, 2791–2799. [Google Scholar] [CrossRef]
- Butz, D.; Hartl, S.; Popp, S.; Walther, S.; Barlow, R.S.; Hasse, C.; Dreizler, A.; Geyer, D. Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics. Combust. Flame 2019, 210, 426–438. [Google Scholar] [CrossRef]
- Zirwes, T.; Zhang, F.; Habisreuther, P.; Hansinger, M.; Bockhorn, H.; Pfitzner, M.; Trimis, D. Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataser. Flow Turbul. Combust. 2021, 1006, 373–404. [Google Scholar] [CrossRef]
- Zhang, F.; Bonart, H.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N. Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM. In High Performance Computing in Science and Engineering ‘16; Springer: Berlin/Heidelberg, Germany, 2015; Volume 14, pp. 221–236. [Google Scholar]
- Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H. Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM. In High Performance Computing in Science and Engineering ‘17; Springer: Berlin/Heidelberg, Germany, 2018; pp. 189–204. [Google Scholar]
- Zirwes, T.; Zhang, F.; Denev, J.A.; Habisreuther, P.; Bockhorn, H.; Trimis, D. Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations. In High Performance Computing in Science and Engineering ‘18; Springer: Berlin/Heidelberg, Germany, 2019; pp. 209–224. [Google Scholar]
- Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J.A.; Bockhorn, H.; Trimis, D. Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM. In Proceedings of the 14th World Congress on Computational Mechanics, Virtual Congress, 11–15 January 2021. [Google Scholar]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. OpenFOAM; OpenCFD Ltd.: Bracknell, UK, 2017. [Google Scholar]
- McDonald, P.W. The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades. In Proceedings of the ASME 1971 International Gas Turbine Conference and Products Show, Houston, TX, USA, 28 March–1 April 1971. [Google Scholar]
- Maccormack, R.; Paullay, A. Computational efficiency achieved by time splitting of finite difference operators. In Proceedings of the 10th Aerospace Sciences Meeting, San Diego, CA, USA, 17–19 January 1972. [Google Scholar]
- Zhang, F.; Zirwes, T.; Nawroth, H.; Habisreuther, P.; Bockhorn, H.; Paschereit, C.O. Combustion-Generated Noise: An Environment-Related Issue for Future Combustion Systems. Energy Technol. 2017, 5, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H. Effect of unsteady stretching on the flame local dynamics. Combust. Flame 2017, 175, 170–179. [Google Scholar] [CrossRef]
- Zirwes, T.; Häber, T.; Zhang, F.; Kosaka, H.; Dreizler, A.; Steinhausen, M.; Hasse, C.; Stagni, A.; Trimis, D.; Suntz, R.; et al. Numerical Study of Quenching Distances for Side-Wall Quenching Using Detailed Diffusion and Chemistry. Flow Turbul. Combust. 2020, 106, 649–679. [Google Scholar] [CrossRef]
- Zhang, F.; Zirwes, T.; Häaber, T.; Bockhorn, H.; Trimis, D.; Suntz, R. Near wall dynamics of premixed flames. Proc. Combust. Inst. 2021, 38, 1955–1964. [Google Scholar] [CrossRef]
- Zirwes, T.; Zhang, F.; Habisreuther, P.; Hansinger, M.; Bockhorn, H.; Pfitzner, M.; Trimis, D. Quasi-DNS Dataset of a Piloted Flame with Inhomogeneous Inlet Conditions. Flow Turbul. Combust. 2019, 104, 997–1027. [Google Scholar] [CrossRef]
- Zirwes, T.; Sontheimer, M.; Zhang, F.; Abdelsamie, A.; Pérez, F.E.H.; Stein, O.T.; Im, H.G.; Kronenburg, A.; Bockhorn, H. Assessment of Numerical Accuracy and Parallel Performance of OpenFOAM and its Reacting Flow Extension EBIdnsFoam. Flow Turbul. Combust. 2023, 111, 567–602. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Santese, T.; Haidn, O.J. The role of turbulence in the characteristic velocity and length of rocket combustors. Aerosp. Sci. Technol. 2023, 134, 108158. [Google Scholar] [CrossRef]
- Kee, R.; Coltrin, M.; Glarborg, P. Chemically Reacting Flow: Theory and Practice; Wiley: London, UK, 2005. [Google Scholar]
- Winter, F.F.; Perakis, N.; Haidn, O.J. Emission imaging and CFD simulation of a coaxial single-element GOX/GCH4 rocket combustor. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Perakis, N.; Rahn, D.; Haidn, O.J.; Eiringhaus, D. Heat Transfer and Combustion Simulation of Seven-Element O2/CH4 Rocket Combustor. J. Propuls. Power 2019, 35, 1080–1097. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Sternin, D.; Haidn, O.; Tajmar, M. Analysis of periodic synthetic turbulence generation and development for direct numerical simulations applications. Phys. Fluids 2021, 33, 125130. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow Turbul. Combust. 2014, 93, 63–92. [Google Scholar] [CrossRef]
- Morsbach, C.; Franke, M. Analysis of a Synthetic Turbulence Generation Method for Periodic Configurations. In Direct and Large-Eddy Simulation XI; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 169–174. [Google Scholar]
- Sternin, A.; Perakis, N.; Celano, M.P.; Haidn, O. CFD-analysis of the effect of a cooling film on flow and heat transfer characteristics in a GCH4/GOX rocket combustion chamber. In Space Propulsion 2018; 3AF: Sevilla, Spain, 2018. [Google Scholar]
- Yeung, P.K.; Pope, S.B. Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 1989, 207, 531–586. [Google Scholar] [CrossRef] [Green Version]
Symbol | Description | Value |
---|---|---|
Laminar flame thickness at stoichiometric conditions | ||
Laminar flame speed at stoichiometric conditions | ||
Global mixture fraction | ||
Injection temperature | ||
Combustion pressure |
Symbol | Description | ||
---|---|---|---|
Average Kolmogorov scale | |||
Average turbulent Reynolds number | |||
Global Reynolds number | |||
Injection velocity | 8.3 m/s | 37.5 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Sanchis, D.; Sternin, A.; Haidn, O.; Tajmar, M. Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion. Aerospace 2023, 10, 671. https://doi.org/10.3390/aerospace10080671
Martinez-Sanchis D, Sternin A, Haidn O, Tajmar M. Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion. Aerospace. 2023; 10(8):671. https://doi.org/10.3390/aerospace10080671
Chicago/Turabian StyleMartinez-Sanchis, Daniel, Andrej Sternin, Oskar Haidn, and Martin Tajmar. 2023. "Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion" Aerospace 10, no. 8: 671. https://doi.org/10.3390/aerospace10080671
APA StyleMartinez-Sanchis, D., Sternin, A., Haidn, O., & Tajmar, M. (2023). Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion. Aerospace, 10(8), 671. https://doi.org/10.3390/aerospace10080671