A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol
Abstract
:1. Introduction
2. Problem Statement
3. Methodologies
3.1. Trajectory Prediction
3.2. Airspace Allocation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Decoded GPS data |
B | Encoded GPS data |
E | Encoder transfer function |
D | Decoder transfer function |
Number of steps for future trajectory prediction | |
Number of executed agreements | |
Number of aircraft in a flight zone before sharding | |
Number of aircraft in a flight zone after sharding | |
L | Autoencoder loss function |
Number of districts that provide sub-flight zones after sharding | |
Number associated with a block in the chain | |
Q | Autoencoder quality function |
Time during which the aircraft is in step n |
References
- Lygeros, J.; Tomlin, C.; Sastry, S. On controller synthesis for nonlinear hybrid systems. In Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), Tampa, FL, USA, 18 December 1998; IEEE: Piscataway, NJ, USA; Volume 2, pp. 2101–2106.
- Murrieta-Mendoza, A.; Demange, S.; George, F.; Botez, R. Performance DataBase creation using a level D simulator for Cessna Citation X aircraft in cruise regime. In Proceedings of the IASTED Modeling, Identification and Control Conference, Innsbruck, Austria, 16–17 February 2015; pp. 818–826. [Google Scholar]
- Murrieta Mendoza, A.; Bunel, A.; Botez, R.M. Aircraft vertical reference trajectory optimization with a RTA constraint using the ABC algorithm. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016; p. 4208. [Google Scholar]
- Murrieta-Mendoza, A.; Romain, C.; Botez, R.M. Commercial aircraft lateral flight reference trajectory optimization. IFAC-PapersOnLine 2016, 49, 1–6. [Google Scholar] [CrossRef]
- Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; Lane, D. Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 2007, 23, 331–341. [Google Scholar] [CrossRef]
- Geraerts, R. Planning short paths with clearance using explicit corridors. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AL, USA, 4–8 May 2021; IEEE: Piscataway, NJ, USA; pp. 1997–2004.
- Yang, K.; Sukkarieh, S. 3D smooth path planning for a UAV in cluttered natural environments. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; IEEE: Piscataway, NJ, USA; pp. 794–800. [Google Scholar]
- Nash, A.; Koenig, S.; Tovey, C. Lazy Theta*: Any-angle path planning and path length analysis in 3D. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; Volume 24, pp. 147–154. [Google Scholar]
- Wilburn, J.N.; Perhinschi, M.G.; Wilburn, B.K. Implementation of a 3-Dimensional Dubins-Based UAV Path Generation Algorithm. In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 5232. [Google Scholar]
- Murrieta-Mendoza, A.; Botez, R.M. Methodology for vertical-navigation flight-trajectory cost calculation using a performance database. J. Aerosp. Inf. Syst. 2015, 12, 519–532. [Google Scholar] [CrossRef]
- Boughari, Y.; Botez, R.; Ghazi, G.; Theel, F. Evolutionary Algorithms for Robust Cessna Citation X Flight Control; No. 2014-01-2166; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Patron, R.F.; Kessaci, A.; Botez, R.M. Flight trajectories optimization under the influence of winds using genetic algorithms. In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 4620. [Google Scholar]
- Hashemi, S.M.; Barati, S.; Talati, S.; Noori, H. A genetic algorithm approach to optimal placement of switching and protective equipment on a distribution network. J. Eng. Appl. Sci. 2016, 11, 1395–1400. [Google Scholar]
- Murrieta-Mendoza, A.; Ruiz, H.; Kessaci, S.; Botez, R.M. 3D reference trajectory optimization using particle swarm optimization. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017; p. 3435. [Google Scholar]
- Murrieta-Mendoza, A.; Hamy, A.; Botez, R.M. Four-and three-dimensional aircraft reference trajectory optimization inspired by ant colony optimization. J. Aerosp. Inf. Syst. 2017, 14, 597–616. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Menhaj, M.B.; Amani, A.M. Reconfigurable Fault-Tolerant Control by Linear quadratic Virtual Actuator under Control Signal Constraint. J. Eng. Appl. Sci. 2006, 11, 1998–2004. [Google Scholar]
- Perhinschi, M.G.; Moncayo, H. Artificial immune system for comprehensive and integrated aircraft abnormal conditions management. Adv. Comput. Intell. Auton. Aerosp. Syst. 2018, 147–218. [Google Scholar]
- Patrón, R.F.; Kessaci, A.; Botez, R.M. Horizontal flight trajectories optimisation for commercial aircraft through a flight management system. Aeronaut. J. 2014, 118, 1499–1518. [Google Scholar] [CrossRef]
- Patrón RS, F.; Botez, R.M.; Labour, D. Vertical profile optimization for the Flight Management System CMA-9000 using the golden section search method. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; IEEE: Piscataway, NJ, USA; pp. 5482–5488. [Google Scholar]
- Hashemi, S.M.; Botez, R.M.; Grigorie, L.T. Adaptive fuzzy control of chaotic flapping relied upon lyapunov-based tuning laws. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3193. [Google Scholar]
- Hashemi, S.; Botez, R. Nonlinear adaptive fuzzy control of uncertain chaotic click mechanism flapping-wing. In CASI AERO 2019 (Laval, QC, Canada, 14–16 May 2019); Canadian Aeronautics and Space Institute: Ottawa, ON, USA, 2019. [Google Scholar]
- Boughari, Y.; Ghazi, G.; Botez, R.M.; Theel, F. New Methodology for Optimal Flight Control Using Differential Evolution Algorithms Applied on the Cessna Citation X Business Aircraft—Part 1. Design and Optimization. INCAS Bull. 2017, 9, 31. [Google Scholar]
- Boughari, Y.; Botez, R.M.; Ghazi, G.; Theel, F. Flight control clearance of the Cessna Citation X using evolutionary algorithms. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 510–532. [Google Scholar] [CrossRef]
- Ghazi, G.; Botez, R.M.; Bourrely, C.; Turculet, A.-A. Method for calculating aircraft flight trajectories in presence of winds. J. Aerosp. Inf. Syst. 2021, 18, 442–463. [Google Scholar] [CrossRef]
- Hashemi, S.; Abyari, M.; Barati, S.; Tahmasebi, S.; Talati, S. A proposed method to controller parameter soft tuning as accommodation FTC after unknown input observer FDI. J. Eng. Appl. Sci. 2016, 11, 2818–2829. [Google Scholar]
- Coulter, N.; Moncayo, H. An Online Machine Learning Paradigm for Spacecraft Fault Detection. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; p. 1339. [Google Scholar]
- Degas, A.; Islam, M.R.; Hurter, C.; Barua, S.; Rahman, H.; Poudel, M.; Ruscio, D.; Ahmed, M.U.; Begum, S.; Rahman, M.A. A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory. Appl. Sci. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Perez, A.E.; Moncayo, H.; Moguel, I.; Perhinschi, M.G.; Al Azzawi, D.; Togayev, A. Development of Immunity Based Adaptive Control Laws for Aircraft Fault Tolerance. In Proceedings of the Dynamic Systems and Control Conference, 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 46186, p. V001T03A001. [Google Scholar]
- van Iersel, Q.G.; Murrieta Mendoza, A.; Felix Patron, R.S.; Hashemi, S.M.; Botez, R.M. Attack and Defense on Aircraft Trajectory Prediction Algorithms. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 4027. [Google Scholar]
- Ghazi, G.; Botez, R.M.; Domanti, S. New methodology for aircraft performance model identification for flight management system applications. J. Aerosp. Inf. Syst. 2020, 17, 294–310. [Google Scholar] [CrossRef]
- Ghazi, G.; Gerardin, B.; Gelhaye, M.; Botez, R.M. New adaptive algorithm development for monitoring aircraft performance and improving flight management system predictions. J. Aerosp. Inf. Syst. 2020, 17, 97–112. [Google Scholar] [CrossRef]
- Ghazi, G.; Botez, R.M.; Maniette, N. Cessna Citation X takeoff and departure trajectories prediction in presence of winds. J. Aerosp. Inf. Syst. 2020, 17, 659–681. [Google Scholar] [CrossRef]
- Delahaye, D.; Puechmorel, S.; Tsiotras, P.; Féron, E. Mathematical models for aircraft trajectory design: A survey. In Air Traffic Management and Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–247. [Google Scholar]
- Dancila, R.; Botez, R. New flight trajectory optimisation method using genetic algorithms. Aeronaut. J. 2021, 125, 618–671. [Google Scholar] [CrossRef]
- Patrón RS, F.; Botez, R.M. Flight trajectory optimization through genetic algorithms for lateral and vertical integrated navigation. J. Aerosp. Inf. Syst. 2015, 12, 533–544. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Botez, R.M.; Grigorie, T.L. New reliability studies of data-driven aircraft trajectory prediction. Aerospace 2020, 7, 145. [Google Scholar] [CrossRef]
- Neumeier, M.; Betsch, M.; Tollkühn, A.; Berberich, T. Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); IEEE: Piscataway, NJ, USA, 2021; pp. 820–827. [Google Scholar]
- Murray, B.; Perera, L.P. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean. Eng. 2020, 209, 107478. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, Z.; Cai, Z.; Chu, X.; Lu, X. Aircraft trajectory clustering in terminal airspace based on deep autoencoder and gaussian mixture model. Aerospace 2021, 8, 266. [Google Scholar] [CrossRef]
- Ivanovic, B.; Leung, K.; Schmerling, E.; Pavone, M. Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach. IEEE Robot. Autom. Lett. 2020, 6, 295–302. [Google Scholar] [CrossRef]
- Nasreen, M.; Ganesh, A.; Sunitha, C. A study on Byzantine fault tolerance methods in distributed networks. Procedia Comput. Sci. 2016, 87, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Burke, E.K.; Burke, E.K.; Kendall, G.; Kendall, G. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Liu, M. Robotic online path planning on point cloud. IEEE Trans. Cybern. 2015, 46, 1217–1228. [Google Scholar] [CrossRef]
- Maurer, A.; Tixeuil, S. Containing byzantine failures with control zones. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 362–370. [Google Scholar] [CrossRef]
- Zegers, F.M.; Hale, M.T.; Shea, J.M.; Dixon, W.E. Event-triggered formation control and leader tracking with resilience to byzantine adversaries: A reputation-based approach. IEEE Trans. Control Netw. Syst. 2021, 8, 1417–1429. [Google Scholar] [CrossRef]
- Mokhtar, A.; Murphy, N.; Bruton, J. Blockchain-based multi-robot path planning. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT); IEEE: Piscataway, NJ, USA, 2019; pp. 584–589. [Google Scholar]
- Cheng, Z.; Zhao, L.; Shi, Z. Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework for Formation Rendezvous. IEEE Access 2022, 10, 45695–45708. [Google Scholar] [CrossRef]
- Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 36. [Google Scholar]
- Castelló Ferrer, E. The blockchain: A new framework for robotic swarm systems. In Proceedings of the Future Technologies Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1037–1058. [Google Scholar]
- De Campos MG, S.; Chanel, C.P.; Chauffaut, C.; Lacan, J. Towards a Blockchain-Based Multi-UAV Surveillance System. Front. Robot. AI 2021, 8, 557692. [Google Scholar] [CrossRef]
- Nguyen, N.; Quanz, B. Temporal latent auto-encoder: A method for probabilistic multivariate time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 9117–9125. [Google Scholar]
- Michelucci, U. An introduction to autoencoders. arXiv 2022, arXiv:2201.03898. [Google Scholar]
- Andersson, O.; Ljungqvist, O.; Tiger, M.; Axehill, D.; Heintz, F. Receding-horizon lattice-based motion planning with dynamic obstacle avoidance. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC); IEEE: Piscataway, NJ, USA, 2018; pp. 4467–4474. [Google Scholar]
- Alladi, T.; Chamola, V.; Sahu, N.; Guizani, M. Applications of blockchain in unmanned aerial vehicles: A review. Veh. Commun. 2020, 23, 100249. [Google Scholar] [CrossRef]
- Alharby, M.; Van Moorsel, A. Blockchain-based smart contracts: A systematic mapping study. arXiv 2017, arXiv:1710.06372. [Google Scholar]
- Hashemi, S.M.; Botez, R.M. Support Vector Regression Application for the Flight Dynamics New Modelling of the UAS-S4. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2576. [Google Scholar]
- Kuitche, M.; Yañez-Badillo, H.; Botez, R.; Hashemi, S. Stabilisation, tracking and disturbance rejection control design for the UAS-S45 Bálaam. Aeronaut. J. 2022, 126, 1474–1496. [Google Scholar] [CrossRef]
- Hashemi, S.; Botez, R. Lyapunov-based robust adaptive configuration of the UAS-S4 flight dynamics fuzzy controller. Aeronaut. J. 2022, 126, 1187–1209. [Google Scholar] [CrossRef]
- Hashemi, S.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. A Novel Air Traffic Management and Control Methodology using Fault-Tolerant Autoencoder and FP2P Blockchain Application on the UAS-S4 Ehécatl. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 2190. [Google Scholar]
- Hashemi, S.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. Attack-tolerant Trajectory Prediction using Generative Adversarial Network Secured by Blockchain Application to the UAS-S4 Ehécatl. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 2192. [Google Scholar]
- Hashemi, S.M.; Botez, R.M. A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial Attacks. SAE Int. J. Aerosp. 2023, 16, 19. [Google Scholar]
Specification | Value |
---|---|
Wingspan | 4.2 m |
Wing area | 2.3 m2 |
Total length | 2.5 m |
Mean aerodynamic chord | 0.57 m |
Empty weight | 50 kg |
Maximum take-off weight | 80 kg |
Loitering airspeed | 35 knots |
Maximum speed | 135 knots |
Service ceiling | 15,000 ft |
Operational range | 120 km |
Data Failures | Prediction Accuracy % | Precision | ||
---|---|---|---|---|
LSTM | Autoencoder | LSTM | Autoencoder | |
No failures | 99.5 | 98.7 | 0.01 | 0.01 |
Latitude | 91.6 | 98.1 | 0.04 | 0.03 |
Latitude and heading | 83.2 | 95.3 | 0.06 | 0.04 |
Latitude, altitude, and speed | 58.7 | 91.2 | 0.10 | 0.07 |
Data Failures | Number of Neurons in the Encoder and Decoder | Number of Neurons in the Latent | Prediction Accuracy % | Error Rate % |
---|---|---|---|---|
Latitude | 5 | 4 | 97.8 | 4.2 |
3 | 97.6 | 4.1 | ||
4 | 3 | 98.1 | 3.3 | |
2 | 43.3 | 17 | ||
Latitude and Heading | 5 | 4 | 94.9 | 5.2 |
3 | 94.6 | 6.3 | ||
4 | 3 | 95.3 | 4.4 | |
2 | 39.2 | 16.6 | ||
Latitude, Altitude, and Speed | 5 | 4 | 90.8 | 8.5 |
3 | 90.3 | 9.2 | ||
4 | 3 | 91.2 | 7.1 | |
2 | 32.6 | 19.8 |
Methodology | Number of Sub-Flight Zones | Attacks Imposed? | Error Rate % |
---|---|---|---|
Linear Consensus Protocol (LCP) | 1 | No | 5.3 |
Yes | 83.2 | ||
Smart Contract-based Consensus Protocol (SCCP) | 1 | No | 8.7 |
Yes | 18.6 | ||
Sharding-SCCP | 4 | No | 7.7 |
Yes | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, S.M.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol. Aerospace 2023, 10, 357. https://doi.org/10.3390/aerospace10040357
Hashemi SM, Hashemi SA, Botez RM, Ghazi G. A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol. Aerospace. 2023; 10(4):357. https://doi.org/10.3390/aerospace10040357
Chicago/Turabian StyleHashemi, Seyed Mohammad, Seyed Ali Hashemi, Ruxandra Mihaela Botez, and Georges Ghazi. 2023. "A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol" Aerospace 10, no. 4: 357. https://doi.org/10.3390/aerospace10040357
APA StyleHashemi, S. M., Hashemi, S. A., Botez, R. M., & Ghazi, G. (2023). A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol. Aerospace, 10(4), 357. https://doi.org/10.3390/aerospace10040357